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Abstract—Surface wave tomography based on continuous

regionalization of model parameters is widely used to invert for

2-D phase or group velocity maps. An inevitable problem is that

the distribution of ray paths is far from homogeneous due to the

spatially uneven distribution of stations and seismic events, which

often affects the spatial resolution of the tomographic model. We

present an improved tomographic method with a spatially varying

smoothing scheme that is based on the continuous regionalization

approach. The smoothness of the inverted model is constrained by

the Gaussian a priori model covariance function with spatially

varying correlation lengths based on ray path density. In addition, a

two-step inversion procedure is used to suppress the effects of data

outliers on tomographic models. Both synthetic and real data are

used to evaluate this newly developed tomographic algorithm. In

the synthetic tests, when the contrived model has different scales of

anomalies but with uneven ray path distribution, we compare the

performance of our spatially varying smoothing method with the

traditional inversion method, and show that the new method is

capable of improving the recovery in regions of dense ray sam-

pling. For real data applications, the resulting phase velocity maps

of Rayleigh waves in SE Tibet produced using the spatially varying

smoothing method show similar features to the results with the

traditional method. However, the new results contain more detailed

structures and appears to better resolve the amplitude of anomalies.

From both synthetic and real data tests we demonstrate that our

new approach is useful to achieve spatially varying resolution when

used in regions with heterogeneous ray path distribution.

Key words: Surface wave tomography, continuous regional-

ization, spatially varying smoothing, correlation length.

1. Introduction

Surface wave tomography based on dispersion

measurement from earthquake waveforms or ambient

noise cross-correlations is an effective tool to study

the structure of crust and upper mantle on both

regional and global scales (e.g., Montagner and

Tanimoto 1991; Ritzwoller et al. 2001; Shapiro et al.

2004; Debayle et al. 2005; Yang et al. 2007; Lin et al.

2008; Yao et al. 2010).

The classical surface wave tomography from

dispersion data is usually performed in two stages.

The first stage involves 2-D regionalization in which

2-D period-dependent phase or group maps are con-

structed based on the ray theory (e.g., Montagner

1986; Ekström et al. 1997; Barmin et al. 2001), 2-D

finite frequency sensitivity kernels (e.g., Ritzwoller

et al. 2002; Yoshizawa and Kennett 2004), or Eikonal

or Helmholtz equations in regions with dense station

distribution (Lin et al. 2009; Pollitz and Snoke 2010;

Lin and Ritzwoller 2011). In the second stage, at each

geographical location, the pure path dispersion curve

is inverted to obtain a local 1-D shear velocity model,

which together forms the fully 3-D shear wave speed

model (e.g., Shapiro and Ritzwoller 2002; Yao et al.

2008). The dispersion data from available paths can

be also directly inverted for 3-D shear velocity vari-

ations without construction of phase or group velocity

maps (e.g., Boschi and Ekström 2002; An et al. 2009;

Fang et al. 2015).

A number of traveltime tomographic methods

based on the ray theory have been developed to invert

surface-wave dispersion measurements on regional or

global scales for 2-D isotropic and azimuthally ani-

sotropic velocity maps, which differ in aspects such

as geometry, model parameterization, and
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regularization schemes. For example, based on

parameterization of integral kernels, the 2-D Backus–

Gilbert approach using the first-spatial gradient

smoothness constraints (Ditmar and Yanovskaya

1987; Yanovskaya and Ditmar 1990) has been

extensively used in regional 2D phase or group

velocity tomography (e.g., Levshin et al. 1989;

Ritzwoller and Levshin 1998). The tomographic

technique presented by Barmin et al. (2001) based on

minimizing a penalty function composed of data

misfit, model smoothness, and the path coverage is

widely used in regional or global scale applications

(e.g., Yang et al. 2007; Lin et al. 2008). Surface wave

tomography with continuous regionalization based on

the Bayesian Theorem (Montagner 1986), which is

derived from the continuous form proposed by

Tarantola and Nercessian (1984), is also widely used

to constrain phase velocity variations and azimuthal

anisotropy (e.g., Silveira and Stutzmann 2002;

Debayle and Sambridge 2004; Yao et al. 2005, 2010).

The approach proposed by Debayle and Sambridge

(2004) has dramatically increased the computational

efficiency of the original method by Montagner

(1986) with incorporation of some sophisticated

geometrical algorithms.

For surface-wave tomographic problems, an

inevitable issue is that the uneven distribution of ray

paths often leads to the relatively ill-conditioned

inverse problem. Consequently, damping and model

regularization are introduced to stabilize the ill-posed

inverse system, which usually sacrifices some model

resolution. To overcome this problem, a useful way is

to change the model parameterization scheme. One

explicit strategy is irregular parameterization based

on rectangles (or squares) with adaptive grid spacing

(e.g., Abers and Roecker 1991; Spakman and Bij-

waard 2001; Simons et al. 2002) or Delaunay

triangles (or Voronoi diagram) with flexible shape

and size (e.g. Sambridge and Gumundsson 1998;

Böhm et al. 2000; Debayle and Sambridge 2004;

Zhang and Thurber 2005). Using this kind of irreg-

ular parameterization, the irregular grids/blocks can

match with the non-uniform ray path distribution,

reduce the number of free parameters, and improve

stability of traditional tomographic methods. Another

popular strategy is the wavelet-based multi-resolution

parameterization, which has been applied to

compensate for the mismatch correlation between

uneven ray path distribution and regular grids to

resolve the model at different scales using the

inherent multiscale nature of the wavelet transform in

the spatial domain (e.g., Chiao and Kuo 2001; Chiao

and Liang 2003; Loris et al. 2007; Delost et al. 2008;

Hung et al. 2011; Simons et al. 2011; Fang and Zhang

2014). In addition, an adaptive parameterization

method, the Bayesian trans-dimensional tomography,

in which the number of unknowns is an unknown

itself, has been shown its feasibility in most 2-D and

some 3-D problems (e.g., Bodin and Sambridge 2009;

Hawkins and Sambridge 2015; Saygin et al. 2016).

And this method can give a quantitative access to the

reliability of the solution model.

Besides changing the model parameterization,

another way to fulfill tomography with spatial vary-

ing resolution is to allow for spatially variable priors

or smoothing constraints in the model regularization.

In this paper, following the continuous regionaliza-

tion inversion method with a least squares criterion

proposed by Tarantola and Valette (1982), we modify

the fixed correlation length in the Gaussian a priori

covariance function to be a spatial function of ray

path density. In this way, smoothness of the inverted

model in regions with different ray path coverage is

constrained by the a priori covariance function with

spatially varying correlation lengths. We use both

synthetic and real data to evaluate the performance of

our algorithm.

2. Methodology

The continuous regionalization inversion

approach takes the function of a continuous variable

itself as the unknown where the theoretical relation-

ship between data and unknowns is assumed to be

linear (Tarantola and Valette 1982). This method has

been applied to 3-D seismic velocity tomography

using arrival times of body waves (Tarantola and

Nercessian 1984) and surface waves (Montagner

1986; Yao et al. 2005). In this section, we describe

the inversion method for regional surface wave

tomography used in Montagner (1986), and then

present the spatially varying smoothing scheme on

this basis.
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2.1. Spatially Varying Smoothing Based

on Continuous Regionalization

The surface wave tomography method (Montag-

ner 1986) based on continuous regionalization of

model parameters (Tarantola and Nercessian 1984) is

widely used to invert for 2-D surface wave phase and

group velocity maps for its clear physical meaning

when adjusting inversion parameters. With the least

squares criterion, the inversion results not only have

the best data fitting but also can keep as close as

possible to the a priori model. When the data errors

exhibit a Gaussian distribution, the objective function

for the generalized inverse problem (Tarantola and

Valette 1982) is expressed as:

/ðmÞ ¼ ðd0 � dÞTC�1
d0
ðd0 � dÞ

þ ðm0 �mÞTC�1
m0
ðm0 �mÞ;

ð1Þ

where d0 is a vector of the observed arrival time data

at a fixed period, d is a vector of the arrival time data

predicted from the actual slowness model m through

a forward equation of the form d = g(m), m0 is the a

priori slowness model, Cd0 represents the a priori data

covariance matrix, and Cm0
is the a priori model

covariance matrix for the a priori model m0.

A classical least squares solution of Eq. (1) could

be obtained (Tarantola and Valette 1982) as:

m ¼ m0 þ Cm0
GTðGCm0

GT þ Cd0Þ
�1ðd0 �Gm0Þ:

ð2Þ

In the continuous form, G stands for the sensitiv-

ity along the ray paths, which can be represented by

integrals along the ray paths, the unknowns are the

functions of a continuous variable r (spatial location

on the spherical surface here) and the solution

(Tarantola and Nercessian 1984) can be written as

mðrÞ ¼ m0ðrÞ þ
X

i

Wi

Z

RiðmÞ

dsiCm0
ðr; riÞ; ð3aÞ

Wi ¼
X

j

ðS�1
ij ÞVj; ð3bÞ

Sij ¼ ðCd0Þij þ
Z

RiðmÞ

dsi

Z

RjðmÞ

dsjCm0
ðrj; riÞ; ð3cÞ

Vj ¼ d0j �
Z

Rj mð Þ

dsjm0ðrjÞ: ð3dÞ

Here, i and j are the path indexes and the integral

path Ri(m) is assumed to be along the ith great circle

path for surface wave propagation. It is usually

assumed that phase or group velocity measurements

are independent for each path. In this case, Cd0 is a

diagonal matrix and the diagonal term represents the

square of the estimated data error (rd
i ) (i.e., variance)

in the ith measurement.

In generally, the model a priori covariance

function describes the confidence in the a priori

model m0 and controls the correlation between

neighboring grids. The Gaussian a priori covariance

function Cm0
ðr; r0Þ used by Tarantola and Nercessian

(1984) and Montagner (1986) represents the covari-

ance between points r and r0 with the analytical form

of:

Cm0
ðr; r0Þ ¼ rmðrÞrmðr0Þ exp

�D2
r;r0

2L2corr

 !
; ð4Þ

where Dr;r0 is the distance between grid points r and

r0, the rm(r) represents the a priori model uncertainty

at each grid point that controls the amplitude per-

turbation of the model parameters, and Lcorr
represents the correlation length of the model

parameters that acts as the spatial smoothing filter in

the model space. For many tomographic problems,

we do not know the exact model prior rm(r). How-
ever, we could roughly estimate rm(r) based on the

data, here phase (or group) velocities measured at

each ray paths, which is commonly referred as the

‘‘Empirical Bayesian’’ approach (e.g., Gelman et al.

2004). In general, we set rm(r) as about twice that of
the standard deviation of all observed phase or group

velocities at each period.

The correlation length Lcorr is a fixed value for

each period in the previous continuous regionaliza-

tion approach (Montagner 1986; Yao et al. 2005), and

its value mainly depends on the spatial and azimuthal

coverage of ray paths and the wavelength of surface

wave. Because of the fixed Lcorr, the size of

heterogeneity that the inversion can retrieve is greater
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or equal to 2Lcorr, approximately. Hence, to avoid

small-scale inversion artifacts and get reliable results,

Lcorr cannot be too small, thus tends to inevitably

smear out sharp boundaries and fine scale features in

regions with dense ray path coverage.

To solve the problem and improve the local

resolution in regions with enough ray path coverage,

we change the fixed correlation length Lcorr into

spatially varying Lcorr as a function of local ray path

density, namely, assigning smaller values to Lcorr in

regions with higher path density so as to achieve

spatially varying smoothing for the 2-D velocity

model. And the new a priori model covariance

function can be written as:

Cm0
ðr; r0Þ ¼ rmðrÞrmðr0Þ exp

�D2
r;r0

2LcorrðpðrÞÞLcorrðpðr0ÞÞ

 !
;

ð5Þ

where the correlation length Lcorr(p(r)) is a spatially

varying function proportional to the ray path density

p(r) at the grid point r. This idea is similar to inver-

sion of the 1-D shear velocity model from dispersion

data, where smaller correlation lengths are chosen for

model parameters at shallower depths while larger

correlation lengths are given at greater depths, con-

sidering the decreased sensitivity of dispersion data to

shear velocities at greater depths (e.g., Yao et al.

2010).

For the construction of the Lcorr(p(r)), we first

perform a series of checkerboard tests with the

descending anomaly size to assess local resolution in

different regions and find the corresponding appropri-

ate correlation length. In this way, we determine the

minimum anomaly size that we can recover and the

corresponding appropriate correlation length that

should be used. Then, in this study, we set the

Lcorr(p(r)) varying linearly from the minimum corre-

lation length Lmin determined in the study region

associated with the largest ray path density to some

appropriate maximum value Lmax determined in

regions with small ray path density, although other

functional forms between the ray path density and the

correlation length can be chosen. Besides, we will

illustrate this process in detail in the synthetic test part.

2.2. Two-Step Inversion for Suppressing Data

Outliers

The standard error in surface wave dispersion

measurements is typically *1%. However, in prac-

tice, there may exist bad measurements or even data

outliers, which to some extent result in artifacts in the

tomographic models. To suppress the effects of bad

measurements and data outliers, we propose a two-

step inversion scheme in this study. First, we perform

the inversion with the diagonal terms of the a priori

data covariance matrix Cd0 set as the square of

estimated measurement errors or 1% of the observed

data for paths without confident error estimates. In

the second step inversion, we calculate the data

misfits (differences between the observed and pre-

dicted velocities) from the first inversion result, and if

the relative data misfits of the corresponding paths

are more than twice of the standard error of all data

misfits, we increase the original data uncertainty rd
i

exponentially as the new data uncertainty r̂id in Cd0

following the expression:

fr̂idg
2 ¼ fridg

2
exp

�i

2�r
� 1

� �� �
; ð6Þ

where �i is the absolute value of the corresponding

misfit of the ith path, and �r is the standard error of all

data misfits. Here in practice, we save the matrix of

the double-integration (the most time-consuming

computational part) in (3c) in the first step inversion

and update the Sij in (3c) in the second step inversion

using (6), which is very simple to implement in the

program. In the application and discussion, we use an

example to demonstrate the effectiveness of this two-

step approach.

3. Synthetic Data Tests

Actual spatial resolution of surface wave tomog-

raphy is always a combined effect of geometrical

constraint and physical limitations (Debayle and

Sambridge 2004). The geometric resolution is mainly

constrained by the ray path coverage and azimuthal

distribution, and physical resolution is dominated by

940 C. Liu and H. Yao Pure Appl. Geophys.



the wavelength. In general, the upper limit of spatial

resolution is determined by the physical resolution,

that is, the Fresnel zone width of the particular wave

type, under the assumption of ray theory with single

scatting approximation. This is also the main reason

restricting the lateral resolution of global surface

wave tomography (Spetzler and Snieder 2001), in

which the period range is usually between 40 and

300 s and the wavelength range is about

160–1500 km. In the following synthetic tests, we

use the Rayleigh wave phase velocity dispersion data

at the period of 20 s, at which the wavelength is about

60–80 km, and we only take the geometric resolution

into account.

The model a priori covariance function of the

traditional method is generally in a Gaussian form

(Eq. (4)). When the distance between the two points

at r and r0 is set as the size of checkerboard anoma-

lies, the spatial correlation RðD; LcorrÞ of these two

points can be written as

RðD; LcorrÞ ¼ exp � D2

2L2corr

� �
: ð7Þ

Here, D is the anomaly size, which means the

target horizontal resolution scale or checkerboard

pattern size. When the correlation length Lcorr is set

equal to D, the correlation R(D, Lcorr) is about 0.6,

which implies that these two points are strongly

correlated and it is difficult to resolve the anomaly

pattern in this case. And when the correlation length

Lcorr is set as
Dffiffi
2

p , the correlation R(D, Lcorr) is about

0.37 which is an intermediate correlation value. If the

correlation length Lcorr is set to D
2
, the correlation

R(D, Lcorr) is about 0.1, which implies very weak

correlation between these two points, and the anom-

aly pattern can be recovered well in regions with

enough ray path coverage, or artifacts will likely be

produced in regions with sparse path coverage since

the inversion may get ill-posed in this situation.

To compare the performance of our spatially

varying smoothing algorithm with traditional algo-

rithm and show the process of how to perform

spatially varying smoothing algorithm, we use the

traditional checkerboard tests although this method

has some drawbacks (Lévêque et al. 1993; Rawlinson

and Spakman 2016). The distribution of ray paths

used in the inversion is the same as that at the period

of 20 s in SE Tibet as in Yao et al. (2010) for inter-

station Rayleigh wave phase velocity tomography.

Figure 1e presents the path coverage, and we can

construct the corresponding ray path density (p(r))

map (Fig. 1f). It is obvious that the ray path density is

larger in the Lehigh array area and smaller in the MIT

array area due to denser station distribution in the

Lehigh array area (Fig. 1). This kind of heteroge-

neous distribution of path density is ideal to evaluate

the performance of our algorithm. For convenience,

the Lehigh array area is denoted as block A and the

MIT array area is denoted as block B hereinafter.

We first create two different checkerboard pat-

terns with anomaly size of 0.4� 9 0.4� and 1� 9 1�
(Figs. 2a, 3a) and assess the local horizontal resolu-

tion by evaluating how well the pattern can be

retrieved in different regions with different ray path

density distributions (Fig. 1f) of the data set. Syn-

thetic phase velocity dispersion data are generated

with these input patterns and we also add 1% Gaus-

sian random errors to the synthetic data. When the

anomaly size is set as 1� 9 1� (Fig. 2a), the most

appropriate fixed Lcorr is 40 km with the least model

difference between the input and recovered models

(Fig. 4a). With this correlation length, the anomaly

pattern is almost correctly reconstructed for most of

the study area (Fig. 2d), except for the central region

between the two arrays with non-uniform azimuthal

ray path coverage (Fig. 1f). If we choose a larger

correlation length of 70 km (i.e., Lcorr � Dffiffi
2

p ), the

recovered pattern in block B is pretty smooth and

anomaly amplitudes in block A with larger ray path

density are less recovered than results with the cor-

relation length of 40 km. And when we choose the

correlation length of 100 km (i.e. Lcorr * D), the

results of the whole study region get smeared,

because the correlation length is similar to the

anomaly size that causes strong spatial correlation

between model parameters.

Then as for the 0.4� 9 0.4� anomaly size, the

corresponding fixed correlation length with the least

model difference is about 20 km (i.e., Lcorr � D
2
)

(Fig. 4a), and the anomaly pattern is retrieved in

block A with good resolution, while artificial

anomalies appear in block B (Fig. 3b) due to rela-

tively sparse coverage of ray paths and the choice of

small Lcorr (Fig. 1f). And as we choose larger
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correlation lengths (e.g., Lcorr ¼ 25 km;Lcorr ¼
40 km), the amplitude of anomaly in block A is less

recovered and the artificial anomalies in block B get

smoother (Fig. 3c, d).

So, for ray path coverage of the data set we use,

we can well retrieve the 1� 9 1� anomalies pattern

for almost the entire study region but can only

retrieve the 0.4� 9 0.4� anomalies in block A with

(a) (b)

(f)

(d)
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(c)
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Figure 1
Ray path coverage of Rayleigh-wave phase velocity measurements at different periods (10, 30, 20 s) (a, c, e) (from Yao et al. 2010) and

corresponding ray path density (P value) maps (b, d, f; the background image with the colorbar for P values) with spatially varying

correlation lengths (black contours). The path density value and spatially varying correlation length maps are calculated based on 0.5� 9 0.5�
grids for (b, d) and 0.2� 9 0.2� grid for (f). In Fig. 1, the red and blue triangles are the temporary stations deployed by MIT and Lehigh

University, respectively; the two permanent stations (dark purple triangles) are located at Kunming (KMI) and Lhasa (LSA), China
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enough path density, when we choose the appropriate

correlation length (i.e., Lcorr ¼ 40 km for 1� 9 1�
pattern; Lcorr ¼ 20 km for 0.4� 9 0.4� pattern). This

implies that the horizontal resolution in block A can

reach about 0.4� and only about 1� in block B. Hence,
to avoid spurious tomographic results, we will typi-

cally choose Lcorr to be 40 km or larger for the

traditional approach if only considering the geometric

resolution. This will certainly sacrifice the resolution

in the area with dense ray path coverage, such as

block A here.

To check the resolvability of the spatially varying

smoothing method, we compare the inversion results

of the new and traditional algorithms using a new 2-D

synthetic model. We set this new synthetic model with

0.4� 9 0.4� checkerboard anomalies in block A and

1� 9 1� checkerboard anomalies in bock B (Fig. 5a),

and then generate the synthetic phase velocity data

with 1 percent Gaussian random noise. For the tradi-

tional approach, the correlation length Lcorr is set to be

a series of values from 5 to 70 km. By contrast, for our

spatially varying smoothing algorithm, since we have

known the appropriate correlation lengths to achieve

expected resolution in block A and block B are 20 and

40 km correspondingly, we let Lcorr(p(r)) vary linearly

with pðrÞ from Lmin (20 km) to Lmax (40 km) (see the

corresponding contour map shown in Fig. 1f) to take

full advantage of the information of path coverage.

Then, we conduct the traditional inversion and the

spatially varying smoothing inversion with the same

synthetic data and a priori model and the results are

shown in Fig. 5.

Then, we calculate the standard deviations of

model differences for the results of the traditional and
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Figure 2
Checkerboard tests for the ray path coverage at 20 s with different anomaly sizes: a the input 1� 9 1� checkerboard model; b–d recovery of

the 1� 9 1� checkerboard model using the traditional method with the fixed correlation length of 40, 70, and 100 km, respectively. The

corresponding path coverage and ray path density maps are shown in Fig. 1e, f. The black lines show the block boundaries in this region. The

colorbar shows the amplitude of the phase velocity anomaly in percent
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new methods in block A, block B, and the whole

study region, respectively. For the traditional method,

the inversion results can achieve the least model

differences in block A, block B, and the whole study

region accordingly, when the corresponding correla-

tion lengths are set to be 20, 40, and 30 km,

respectively (Fig. 4b).

For the traditional inversion with a fixed correla-

tion length of 20 km, it can recover most of the

0.4� 9 0.4� anomalies (Fig. 5b) with the least model

difference in block A (Fig. 4b), while artificial

anomalies appear in block B since the very small

correlation length will result in relatively weak reg-

ularization of model parameters and thus

unstable inversion results in regions with sparse path

coverage. When we set the correlation length as

40 km for the traditional method, it can recover the

1� 9 1� anomalies almost perfectly (Fig. 5c) with the

least model difference in block B (Fig. 4b), but the

0.4� 9 0.4� anomalies get smeared (Fig. 5c) because

the correlation length is similar as the anomaly size.

We can get the recovered model with the least model

difference in the whole study region when the cor-

relation length is set to be 30 km (Fig. 5d), which

somewhat compromises the resolution in both block

A and B. However, the retrieved amplitude of

anomalies in block A (Fig. 5d) is worse than the

result with the correlation length of 20 km (Fig. 5b)

and the recovery of the 1� 9 1� anomalies (Fig. 5d)

is less constrained than the result with the correlation

length of 40 km in block B (Fig. 5c).

By contrast, the retrieved model of the spatially

varying smoothing method can resolve the 1� 9 1�
anomalies properly in block B and have preferable

resolution for the 0.4� 9 0.4� anomalies with better

recovery of amplitude of anomalies (Fig. 5e) than
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Figure 3
Similar as Fig. 2 but for a the input 0.4� 9 0.4� checkerboard model and b–d recovery of the 0.4� 9 0.4� checkerboard model using the

traditional method with the fixed correlation length of 20, 25, and 40 km, respectively
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that of the traditional method with the correlation

length of 30 km (Fig. 5d). From the perspective of

model difference and data fitting, the result of the

spatially varying smoothing method achieves a small

model difference in block A close to the result with

the fixed correlation of 20 km and a relative close

model difference in block B with the result using the

fixed correlation of 40 km (Fig. 4b). At the same

time, it gets the least model difference in the whole

study area than all the results of the traditional

method with good data fitting (Fig. 4b, c).

Tarantola and Nercessian (1984) can obtain the

posterior model covariance for continuous regional-

ization, which gives meaningful uncertainty estimates

of model parameters. The posterior model errors in

the results of the traditional method and spatially

varying smoothing method (Fig. 6) are calculated

from the posterior covariance matrix. The use of large

correlation lengths reduces ill-conditioning problems

and results in smooth but reliable results with smaller

posterior errors (Fig. 6b). Compared with the results

of the traditional method with correlation lengths of

20 and 30 km, the spatially varying smoothing

algorithm can recover the 1� 9 1� pattern better with

smaller posterior errors. And the spatially varying

smoothing algorithm significantly improves the

amplitude recovery of the 0.4� 9 0.4� anomalies in

block A with relatively small posterior errors by

contrast with the traditional method with the corre-

lation length of 40 km. Through assessing the model

posterior errors, we can ensure that the increased

resolution of the spatially varying smoothing method

is not at the cost of larger model uncertainties.

4. Application and Discussion

4.1. Application to Data in SE Tibet

As a proof of concept, we apply our method using

the same dispersion data set as in Yao et al. (2010) to

obtain Rayleigh-wave phase velocity variations at

periods 10 and 30 s. The ray path distribution (see

Fig. 1a, c) for these two different periods is excellent,

and the corresponding path density p(r) maps are

shown in Fig. 1b, d using 0.5� grid spacing. The

study region is also meshed with a grid separation of

0.5� for the inversion. For the traditional inversion

approach the correlation length Lcorr is set to be

110 km at 10 and 30 s similar as in Yao et al. (2010),

and for the spatially varying smoothing inversion

method, Lcorr(p(r)) is varying from 50 to 110 km

linearly based on path density (see Fig. 1b, d).
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Figure 4
The standard deviation of the phase velocity model differences and data residuals: a the standard deviation of the model differences between

the input and the recovered checkerboard models with the anomaly size 0.4� 9 0.4� (circle) and 1� 9 1� (triangle) using different correlation

lengths in the traditional tomography. b The standard deviation of the model differences between the input and recovered checkerboard

models with the checkerboard model of mixed anomaly sizes in block A (blue), block B (black), and the whole study region (red). The solid

lines with symbols of dot (blue), diamond (black) and asterisk (red) represent the model differences of the traditional method results using

different correlation lengths in block A, block B, and the whole study region, respectively, and the dashed lines indicates the model

differences of the new method results with the line color for the region same as the traditional method. c The standard deviation of the

traveltime residuals between the input (observed) and synthetic traveltime data with the checkerboard model of mixed anomaly sizes using the

new method (red dashed line) and the traditional method (blue dotted line) with different correlation lengths
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Compared with the phase velocity maps derived

from the traditional inversion and spatially varying

smoothing inversion method, the results show very

similar features with a good correspondence to the

geological features, but the spatially varying smooth-

ing inversion results show more details and relatively

larger velocity variations (Fig. 7). Generally

speaking, the fundamental mode Rayleigh wave

phase velocity is mostly sensitive to shear wave

speed at depths around 1/3 of its corresponding

wavelength. At the period of 10 s, Rayleigh wave

phase velocity is mostly sensitive to shear wave speed

structure between *5 and 15 km depth, thus the

whole structure is very similar to the map of shear
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Checkerboard tests for the ray path coverage at 20 s with the checkerboard model of mixed anomaly sizes: a the checkerboard model with the

mixed 0.4� 9 0.4� and 1� 9 1� anomalies; b–d the recovery using the traditional method with the fixed correlation length of 20, 30, and

40 km, respectively; e the recovery using the new method. The corresponding path coverage and ray path density map are shown in Fig. 1e, f
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wave speeds at 10 km (Yao et al. 2010). The low

phase velocities appear near major faults zones, such

as Xianshuihe Fault, Batang Fault, Lijiang Fault, Red

River Fault, and Xianjiang Fault zone; and the

boundaries of the low velocity regions seem to

coincide roughly with some major faults in the study

area, e.g., Red River Fault and Lijiang Fault.

The phase velocity at the period of 30 s samples

primarily the shear velocity structure in the lower

crust in the high plateau area and lower crust and

uppermost mantle in Yunnan, according to its sensi-

tivity kernel. Both 30 s phase velocity maps (Fig. 7c,

d) show similar features: low phase velocities appear

beneath the plateau area with crustal thickness of

about 50–75 km (Yao et al. 2010) and high phase

velocities beneath the Sichuan Basin and Yunnan in

SW China, where the crustal thickness is typically

around 40–50 km (Yao et al. 2010). Besides the thick

crustal thickness that contributes to low phase

velocities at 30 s in the high plateau area, previous

tomographic results have revealed apparent mid-

lower crust low velocities in SE Tibet (e.g., Yao et al.

2010; Yang et al. 2012; Liu et al. 2014; Bao et al.

2015), which may also significantly decrease the

phase velocity at 30 s in these regions.

In contrast with the result of the original inversion

method, the spatially varying inversion reveals finer

structures in the Lehigh array area and western part of

the MIT array as the result of high path density and

hence shorter correlation length rather than the

artifacts produced in the inversion; for example, in

the traditional results at 10 s, the low velocity

anomaly seems continuous near Batang Fault, but

for the new method, there are two separated low

velocity regions. And the amplitude of some anoma-

lies also gets larger in the new model such as the high

velocity anomaly near Luzhijiang Fault (Fig. 7d). We

also calculate the posterior errors of the results to

access model uncertainties (Fig. 8), and in most

regions the posterior error of the spatially varying

smoothing method lies within the 1% error contour

line (Fig. 9b, d) except for the central region between
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errors for the recovered results using the new method. The corresponding recovery results are shown in Fig. 5b–e
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the two arrays with non-uniform azimuthal path

coverage, which suggests that the anomaly patterns

of the results (Fig. 7b, d) using the spatially varying

smoothing method are not the artifacts of the inver-

sion. As for the data misfit, compared with the

original inversion, the standard deviation of the

traveltime residuals is reduced from 1.642 to 1.612 s

at 10 s and from 1.505 to 1.468 s at 30 s using the

spatially varying smoothing inversion, meanwhile the

average of the residual is closer to zero. This is mainly

due to the fact that the spatially varying smoothing

inversion has smaller correlation lengths in regions

with denser ray path coverage, thus resulting in less

lateral smearing effects in the model space.

4.2. Two-Step Inversion to Suppress Effect of Data

Outliers

To inspect the performance of our proposed two-

step inversion scheme to suppress the effect of data

outliers, we conduct another synthetic test at 10 s

using the output model of the spatially varying

smoothing method (Fig. 7b) as the ‘‘true’’ model.

We first generate the synthetic phase velocity data

from the ‘‘true’’ model. Among all the synthetic data,

97% (randomly picked) are added 1% random Gaus-

sian noise, and the rest 3% (see Fig. 9 for the paths)

are added 10% random noise, which stand for the

potential data outliers. Then we conduct inversion

adopting the spatially varying smoothing method with
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Figure 7
Rayleigh-wave phase velocity maps at periods 10 and 30 s using the traditional inversion and spatially varying smoothing inversion methods.

a and c give the phase velocity maps at 10 and 30 s using the traditional method with a fixed correlation length of 110 km, respectively. b and

d are the phase velocity maps at 10 and 30 s using the spatially varying smoothing method with the corresponding spatial correlation length

shown in Fig. 1b, d, respectively. The colorbar shows the amplitude of the velocity anomaly in percent. The major faults are depicted as thin

black lines (after Wang et al. 1998; Wang and Burchfiel 2000; Shen et al. 2005), and the corresponding abbreviations are as follows: JLF Jiali

Fault, GZF Ganzi Fault, LMSF Longmenshan Fault, XSHF Xianshuihe Fault, LTF Litang Fault, BTF Batang Fault, ANHF Anninghe Fault,

ZMHF Zemuhe Fault, ZDF Zhongdian Fault, LJF Lijiang Fault,MLFMuli Fault, CHF Chenghai Fault, LZJF Luzhijiang Fault, XJF Xiaojiang
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the spatial correlation length same as those used for

Fig. 7b, and the first and second step inversion results

are shown in Fig. 10a, b, respectively. The corre-

sponding differences between the obtained model of

each step and the ‘‘true’’ model (Fig. 7b) are shown in

Fig. 10c, d, respectively. The first step inversion

results show obvious artifacts and large relative model

differences (above 6%) in the central region (Fig. 10c,

d). In the second step inversion, we increase the a

priori uncertainty for paths with very large misfit (see

Eq. (6)), and the results show that the pattern as well

as amplitude of anomalies can be well retrieved

except the marginal regions with sparse data coverage

(Fig. 10b, d). Moreover, in most of the study region,

the relative model differences are below 2%. This test

well demonstrates that our two-step inversion

scheme can suppress the effect of data outliers

effectively.

4.3. Comparisons and Limitations

Our spatially varying smoothing approach and the

Voronoi diagram approach by Debayle and Sam-

bridge (2004) both adopt the continuous

regionalization scheme of Tarantola and Nercessian

(1984) and Montagner (1986), and both methods can

evaluate the variation of lateral resolution and

achieve tomographic models with spatially varying

resolution based on ray path coverage. The Voronoi

diagram approach by Debayle and Sambridge (2004)

uses the local ray path density and azimuthal

coverage to construct spatially adaptive Voronoi

cells (i.e., the model space) but with a fixed

correlation length. However, in our approach, we

use the fixed regular grids but with a spatially varying

correlation length for each grid based on its ray path

density. Hence, in the Voronoi diagram approach, the
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Figure 10
Recovery tests from the synthetic model (Fig. 7b) using the two-step method at period 10 s with data outliers shown in Fig. 9. a and b give the

recovered models of first and second step inversion results with the same spatial correlation length shown as in Fig. 1b, respectively. c and

d give the model differences between the recovered models of first and second step inversion and the ‘‘true’’ model (Fig. 7b), respectively.

The colorbar shows the amplitude of the velocity anomaly in percent
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highest resolution is controlled by the fixed correla-

tion length, while in our approach the highest

resolution is controlled by the lowest correlation

length, which is provided by a series of resolution

tests. In regions with sparse path coverage (i.e., lower

resolution), the Voronoi diagram approach increases

the size of the Voronoi cells, while in our approach

we increase the correlation lengths.

There still exit some drawbacks in our spatially

varying smoothing method. In our approach, the

Lcorr(p(r)) is set to vary linearly with pðrÞ, the ray

path density, with the largest and lowest correlation

lengths determined by a series of checkerboard

resolution tests. However, the traditional checker-

board tests have some potential drawbacks, for

instance, it can neither provide quantitative measures

of resolution nor reveal true structural distortion or

smearing that can be caused by the data coverage

(Rawlinson and Spakman 2016), and the shape of

checkerboard pattern may also affect the recovery

results (Lévêque et al. 1993). A more appropriate

work in the future is to first determine the spatially

varying resolution length via analysis of the resolu-

tion matrix (Yanovskaya and Ditmar 1990; Barmin

et al. 2001) and then relates the spatial correlation

length function linearly with the spatial resolution

length. In addition, we have not considered the

azimuthal path coverage in determining the ray path

density, which also needs to be improved in the

future, in particular for the inversion of azimuthal

anisotropy. And the use of spatial resolution length

estimated from the resolution matrix will be better

than the ray path density for considering the

azimuthal path coverage, which helps to give more

reliable spatially varying correlation lengths.

5. Conclusion

We propose a new approach to achieve spatially

varying smoothing tomography based on the tradi-

tional continuous regionalization method for surface

wave tomography. This new method uses spatially

varying correlation lengths based on the ray path

density instead of a fixed-value correlation length. To

suppress effects of data outliers on inversion results,

we propose a two-step inversion procedure, in which

the data standard errors for paths with very large

misfits in the first step inversion will be significantly

increased in the second step inversion. Our method

inherits the merits of the continuous regionalization

approach including its robustness and clear physical

meanings. The checkerboard tests with different sizes

of anomalies are used to design the range of the

spatially varying correlation lengths. The synthetic

data tests show that the spatially varying smoothing

inversion provides better spatial resolution in regions

with higher path density owing to the choice of

smaller correlation lengths in the inversion. We

applied the proposed method to real surface wave

dispersion data set in SE Tibet. The new algorithm

obtains similar phase velocity structures as the tra-

ditional inversion approach, but the results have

higher spatial resolution in regions with better path

coverage and appear to better resolve the amplitude

of anomalies.
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Böhm, G., Galuppo, P., & Vesnaver, A. (2000). 3D adaptive

tomography using Delaunay triangles and Voronoi polygons.

Geophysical Prospecting, 48(4), 723–744.

Boschi, L., & Ekström, G. (2002). New images of the Earth’s upper

mantle from measurements of surface wave phase velocity

anomalies. Journal of Geophysical Research: Solid Earth

(1978–2012), 107(B4), 2059.

Chiao, L. Y., & Kuo, B. Y. (2001). Multiscale seismic tomography.

Geophysical Journal International, 145(2), 517–527.

Chiao, L. Y., & Liang, W. T. (2003). Multiresolution parameteri-

zation for geophysical inverse problems. Geophysics, 68(1),

199–209.

Debayle, E., Kennett, B., & Priestley, K. (2005). Global azimuthal

seismic anisotropy and the unique plate-motion deformation of

Australia. Nature, 433(7025), 509–512.

Debayle, E., & Sambridge, M. (2004). Inversion of massive surface

wave data sets: Model construction and resolution assessment.

Journal Geophysical Research, 109, B02316.

Delost, M., Virieux, J., & Operto, S. (2008). First arrival traveltime

tomography using second generation wavelets. Geophysical

Prospecting, 56(4), 505–526.

Ditmar, P. G., & Yanovskaya, T. B. (1987). Generalization of the

Backus–Gilbert method for estimation of the horizontal varia-

tions of surface wave velocity. Izvestiya of the Academy of

Sciences of the USSR Physics of the Solid Earth, English

Translation, 23(6), 470–477.

Ekström, G., Tromp, J., & Larson, E. W. (1997). Measurements

and global models of surface wave propagation. Journal of

Geophysical Research: Solid Earth (1978–2012), 102(B4),

8137–8157.

Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D.

(2015). Direct inversion of surface wave dispersion for three-

dimensional shallow crustal structure based on ray tracing:

methodology and application. Geophysical Journal Interna-

tional, 201(3), 1251–1263.

Fang, H., & Zhang, H. (2014). Wavelet-based double-difference

seismic tomography with sparsity regularization. Geophysical

Journal International, 199(2), 944–955.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004).

Bayesian data analysis. Boca Raton: Chapman & Hall/CRC.

Hawkins, R., & Sambridge, M. (2015). Geophysical imaging using

trans-dimensional trees. Geophysical Journal International,

203(2), 972–1000.

Hung, S. H., Chen, W. P., & Chiao, L. Y. (2011). A data-adaptive,

multiscale approach of finite-frequency, traveltime tomography

with special reference to P and S wave data from central Tibet.

Journal of Geophysical Research: Solid Earth (1978–2012),

116(B6), B06307. doi:10.1029/2010JB008190.
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