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Abstract Seismic anisotropy provides important con-

straints on deformation patterns of Earth’s material. Ray-

leigh wave dispersion data with azimuthal anisotropy can be

used to invert for depth-dependent shear wavespeed azi-

muthal anisotropy, therefore reflecting depth-varying

deformation patterns in the crust and upper mantle. In this

study, we propose a two-step method that uses the Neigh-

borhood Algorithm (NA) for the point-wise inversion of

depth-dependent shear wavespeeds and azimuthal anisot-

ropy from Rayleigh wave azimuthally anisotropic dispersion

data. The first step employs the NA to estimate depth-

dependent VSV (or the elastic parameter L) as well as their

uncertainties from the isotropic part Rayleigh wave disper-

sion data. In the second step, we first adopt a difference

scheme to compute approximate Rayleigh-wave phase

velocity sensitivity kernels to azimuthally anisotropic

parameters with respect to the velocity model obtained in the

first step. Then we perform the NA to estimate the azi-

muthally anisotropic parameters Gc/L and Gs/L at depths

separately from the corresponding cosine and sine terms of

the azimuthally anisotropic dispersion data. Finally, we

compute the depth-dependent magnitude and fast polariza-

tion azimuth of shear wavespeed azimuthal anisotropy. The

use of the global search NA and Bayesian analysis allows for

more reliable estimates of depth-dependent shear wavespe-

eds and azimuthal anisotropy as well as their uncertainties.

We illustrate the inversion method using the azimuthally

anisotropic dispersion data in SE Tibet, where we find

apparent changes of fast axes of shear wavespeed azimuthal

anisotropy between the crust and uppermost mantle.
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1 Introduction

Surface wave tomography from earthquake data or ambient

noise cross-correlations has been widely used to investigate

crust and upper mantle shear wave velocity structures

globally or regionally. A majority of surface wave studies

have focused on the inversion of isotropic shear waves-

peeds (e.g., Simons et al. 1999; Huang et al. 2003; Yao

et al. 2008; An et al. 2009; Li et al. 2009; Zheng et al.

2010; Sun et al. 2010; Yang et al. 2012; Li et al. 2013),

while some other studies focus on the inversion of radially

or azimuthally anisotropic shear velocity structures. These

studies are important for understanding shape or lattice

preferred orientations of minerals and deformation styles in

the crust and upper mantle (Savage 1999; Mainprice 2007;

Montagner 2007). For instance, Shapiro and Ritzwoller

(2002) and Zhou et al. (2006) used earthquake Rayleigh

and Love waves to obtain global models of shear wave-

speed radial anisotropy in the upper mantle, that is, the

difference between the vertically polarized shear wave-

speed (VSV) and the horizontally polarized shear wave-

speed (VSH). Ambient noise tomography using both

Rayleigh and Love waves can produce high-resolution

shear wavespeed radial anisotropy in the crust (e.g., Huang

et al. 2010; Moschetti et al. 2010; Guo et al. 2012; Luo

et al. 2013).
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In regions with good azimuthal path coverage, period-

dependent 2-D phase/group velocity maps with azimuthal

anisotropy can be obtained either from direct inversion of

phase/group velocity dispersion measurements (e.g.,

Montagner 1986; Su et al. 2008; Fry et al. 2010; Yao

et al. 2010; Yi et al. 2010; Endrun et al. 2011; Lu et al.

2014) or from localized estimation of phase velocity and

its azimuthal anisotropy by solving the Eikonal equation

(Lin et al. 2009) or the Helmholtz equation (Lin and

Ritzwoller 2011). Montagner and Nataf (1986) proposed

a linearized inversion method for inverting azimuthal

anisotropy of surface wave dispersion for shear waves-

peeds with azimuthal and radial anisotropy at depths.

This method has been used to obtain upper mantle azi-

muthal anisotropy regionally (e.g., Montagner and Jobert

1988; Silveira and Stutzmann 2002; Yao et al. 2010) and

globally (e.g., Montagner and Tanimoto 1990). Another

approach to obtain the depth-dependent VSV and azi-

muthal anisotropy is following a two-step procedure

based on waveform inversions: (1) nonlinear surface

waveform inversion to obtain 1-D path-averaged VSV

models and (2) tomographic inversion to invert all 1-D

path-averaged VSV models for 3-D VSV structures and

azimuthal anisotropy (e.g., Simons et al. 2002; Debayle

et al. 2005).

The inversion of (isotropic) shear wavespeed structure

from surface wave dispersion is nonlinear and inversion

results may depend on the initial reference model. A

number of global optimization algorithms can be applied to

invert dispersion data for shear wavespeed models,

including the Monte-Carlo approach (Shapiro and Ritzw-

oller 2002), the Neighborhood Algorithm (Sambridge

1999a, b; Yao et al. 2008), the Genetic Algorithms (Shi and

Jin 1995; Wu et al. 2001), etc. Instead of just giving one

best-fit model in the linearized inversion approach, these

global searching methods typically perform (quasi-) ran-

dom walks in the model space, retain a subset of models

that satisfy certain misfit criteria, and finally give an

ensemble of acceptable models. From Bayesian statistical

analysis of the generated model ensemble, we can access

uncertainties of model parameters and correlations between

different model parameters (e.g., Sambridge 1999b; Yao

et al. 2008).

From Montagner and Nataf (1986), the inversion of

azimuthally anisotropic parameters of shear wavespeeds

depends on the isotropic part shear wavespeed structure.

Therefore, a reliable isotropic shear wavespeed model is

important for robust estimation of azimuthally anisotropic

model parameters. In this study, we propose a two-step

inversion method using the Neighborhood Algorithm and

Bayesian analysis (Sambridge 1999a, b) to invert azi-

muthally anisotropic Rayleigh wave dispersion data for the

1-D model of depth-dependent shear wavespeed and

azimuthal anisotropy. We will first describe the details of

the proposed methodology and then apply this method in

SE Tibet. Finally, we will discuss the proposed method-

ology and the inversion results.

2 Methodology

2.1 Rayleigh wave azimuthal anisotropy

From Smith and Dahlen (1973) Rayleigh-wave phase

velocity c(x, M, w) at location M for an angular frequency

x and propagation azimuth w (with respect to north) can be

expressed as

cðx;M;wÞ ¼ c0ðxÞ þ a0ðx;MÞ þ a1ðx;MÞ cos 2w

þ a2ðx;MÞ sin 2wþ a3ðx;MÞ cos 4w

þ a4ðx;MÞ sin 4w; ð1Þ

where c0(x) is the reference phase velocity from a

reference model, and a0 is the isotropic phase velocity

perturbation with respect to the reference phase velocity,

a1,2 and a3,4 are the azimuthally anisotropic coefficients for

the 2w (180� periodicity) and 4w (360� periodicity) terms,

respectively. As noted by Montagner and Nataf (1986), the

4w terms are negligibly small for Rayleigh waves.

Therefore, by ignoring the 4w terms in Eq. (1), the

perturbation of phase velocity with respect to the

reference c0(x) can be written as

dcRðx;M;wÞ � a0ðx;MÞ þ acðx;MÞ cos 2w
þ asðx;MÞ sin 2w; ð2Þ

where ac, as are used here to replace a1, a2, respectively in

Eq. (1) in order to denote the cosine and sine terms.

Following Montagner and Nataf (1986), we express the

Rayleigh-wave phase velocity perturbation dcR(M, x, w) at

location M as

dcRðM;x;wÞ �
Z H

0

"
ocR

oA
dAþ Bc cos 2wþ Bs sin 2wð Þ

þ ocR

oC
dC þ ocR

oF
dF þ Hc cos 2wð

þHs sin 2wÞ þ ocR

oL
dLþ Gc cos 2wð

þGs sin 2wÞ
#

dz ð3Þ

The four parameters (A, C, F, L) in (3) together with the

other one N describe the equivalent transversely isotropic

medium with a vertical symmetry axis with A ¼ qV2
PH;

C ¼ qV2
PV; L ¼ qV2

SV; N ¼ qV2
SH; in which q is density,

VPH and VPV are the horizontally and vertically
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‘‘propagating’’ P-wave velocities, VSH and VSV are the

horizontally and vertically ‘‘polarized’’ S-wave velocities,

respectively. The other six parameters Bs,c, Gs,c, and Hs,c

give the 2w azimuthal variations (180� periodicity) of A, L,

and F, respectively. The kernels qcR/qpi (pi = A, L, or

F) can be calculated from a 1-D reference model. A gen-

eralized least squares inversion approach can be imple-

mented to solve the Eq. (3) to obtain these elastic

parameters (Montagner and Nataf 1986).

Montagner and Nataf (1986) found that the qcR/qL term

has the largest contribution in Eq. (3), qcR/qA is compa-

rably large in the crust and negligibly small in the upper

mantle, but qcR/qF is somewhat smaller. Therefore, we can

approximate (3) by ignoring the qcR/qF term as

dcRðM;x;wÞ �
Z H

0

ocRðxÞ
oA

dAþ Bc cos 2wþ Bs sin 2wð Þ
�

þ ocRðxÞ
oL

dLþ Gc cos 2wþ Gs sin 2wð Þ

þ ocR

oC
dC

�
dz ð4Þ

Since for every azimuth w, (4) holds, thus we have

a0ðx;MÞ �
Z H

0

ocRðxÞ
oA

dAþ ocRðxÞ
oL

dLþ ocR

oC
dC

�
dz

�
;

ð5Þ

ac;s x; Mð Þ �
Z H

0

ocR xð Þ
oA

Bc;s þ
ocR xð Þ

oL
Gc;s

� �
dz ð6Þ

The use of the subscript c,s in (6) means there are two

equations, one taking the subscript c and the other one

taking s in all corresponding variables in (6). This notation

will be similarly used hereinafter. Equation (5) can be used

to solve for dA, dL, and dC from the isotropic part of

Rayleigh-wave phase velocity perturbations using the

(iterative) linearized inversion method. However, usually

only dL can be well resolved due to large sensitivity of qcR/

qL in (5) (Montagner and Nataf 1986).

2.2 Inversion for shear wavespeeds and azimuthal

anisotropy

We can invert for the isotropic part VSV of a layered model

from dispersion data using global searching algorithms, for

instance, Metropolis Monte-Carlo Algorithm (Shapiro and

Ritzwoller 2002), Neighborhood Algorithm (Sambridge

1999a, b; Yao et al. 2008), etc. Typically we perform forward

calculations of the isotropic part dispersion data cpred(x) from

an ensemble of the generated models (a function of VP, VS and

q), which are compared with the observed isotropic part

dispersion measurements cobs(x) = c0(x) ? a0(x,M) in

order to obtain best fitting models.

In this study, we use the global searching Neighborhood

Algorithm (NA) and Bayesian analysis (Sambridge 1999a,

b) to estimate L and Gc,s as well as their uncertainties. The

NA involves two stages: (1) the NAS stage (Sambridge

1999a), which consists of a model space search based on

Voronoi cells to identify the ‘‘good’’ fitting model regions;

and (2) the NAB stage (Sambridge 1999b), which employs

the Bayesian statistical analysis of the generated model

ensemble in the NAS stage to compute the posterior mean

model parameters and their uncertainties from the 1-D

marginal posterior probability density functions (1-D PPDFs

or 1-D marginals) and trade-offs between different two

model parameters from the 2-D PPDFs (or 2-D marginals).

From (6), we note that the reliable estimation of azi-

muthal anisotropy (Gs,c and Bs,c) relies on accuracy of the

sensitivity kernels qcR/qL and qcR/qA, therefore it is

important to first obtain a good isotropic reference model to

compute these kernels. Therefore, we propose a two-step

inversion strategy:

(1) Step 1: Perform the NA to estimate the layered VSV

(or L) as well as their uncertainties from the isotropic

part Rayleigh wave dispersion data (cobs(x), at all

available frequencies). We use the method due to

Herrmann and Ammon (2004) to compute the

dispersion for an isotropic model. VPH (or A) and q
are linked to VSV (or L) using some empirical

relationships in the crust (Brocher 2005) and upper

mantle (Masters et al. 2000). We refer to Yao et al.

(2008, 2010) for the details of this step.

(2) Step 2: Perform the NA to estimate to Gc and Bc (or Gs

and Bs) from the azimuthally anisotropic part of

Rayleigh wave dispersion data, ac(x, M) (or ac(x, M)),

using the perturbation Eq. (6) with the elastic parameters

(e.g., L & A) obtained from Step 1. (Note: there is no

direct forward calculation method available to compute

ac,s(x, M) from an azimuthally anisotropic model).

The objective of Step 1, which gives an optimal 1-D

isotropic model, allows for more accurate calculation of

sensitivity kernels in (6) for the subsequent estimation of the

azimuthally anisotropic parameters (Gs,c and Bs,c) in Step 2.

For a layered model (K layers) and Nd data measure-

ments (i.e., phase velocity measurements at Nd different

frequencies), Eq. (6) can be rewritten as

âc;sðxjÞ �
XK

i¼1

dcRðxjÞ
dAðiÞ

BðiÞc;s þ
dcRðxjÞ

dLðiÞ
GðiÞc;s

� �
ð7Þ

or

âc;sðxjÞ�
XK

i¼1

AðiÞ
dcRðxjÞ
dAðiÞ

� �
B
ðiÞ
c;s

AðiÞ
þ LðiÞ

dcRðxjÞ
dLðiÞ

� �
G
ðiÞ
c;s

LðiÞ

( )
;

ð8Þ
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where xj is the jth frequency (j = 1, 2, …, Nd), âc;sðxjÞ are

the predicted data at frequency xj, dcR(xj) is the

perturbation of the phase velocity at frequency xj, dL(i)

(or dA(i)) is the perturbation of L (or A) of the ith layer, and

G
ðiÞ
c;s and B

ðiÞ
c;s are the azimuthally anisotropic parameters of

the ith layer. If there exists some simple relationship

between the perturbation (in percent) of B
ðiÞ
c (or B

ðiÞ
s ) and

the perturbation of G
ðiÞ
c (or G

ðiÞ
s Þ as

B
ðiÞ
c;s

AðiÞ
¼ cðiÞ

G
ðiÞ
c;s

LðiÞ
¼ cðiÞĜðiÞc;s; ð9Þ

where cðiÞ ¼ B
ðiÞ
c;s

.
AðiÞ

h i.
G
ðiÞ
c;s

.
LðiÞ

h i
is a constant and

ĜðiÞc;s ¼ G
ðiÞ
c;s

.
LðiÞ, Eq. (8) becomes

âc;sðxjÞ �
XK

i¼1

cðiÞAðiÞ
dcRðxjÞ
dAðiÞ

þ LðiÞ
dcRðxjÞ

dLðiÞ

� �
ĜðiÞc;s: ð10Þ

The sensitivity kernels
dcRðxjÞ
dAðiÞ

and
dcRðxjÞ

dLðiÞ
can be com-

puted using the normal mode theory (Anderson and Dzie-

wonski 1982). Here we compute these kernels using a

difference method. In Eq. (10), if the density variation is

ignored for each layer, the perturbation of A and L can be

obtained as

dAðiÞ � 2qV
ðiÞ
PHdV

ðiÞ
PH

dLðiÞ � 2qV
ðiÞ
SVdV

ðiÞ
SV

(
: ð11Þ

So for a given velocity model, we perturb VPH (or VSV)

of the ith layer to obtain dA(i) (or dL(i)), and then calculate

the phase velocity perturbations dcR(xj) by performing

forward dispersion calculations. Thus, the sensitivity

matrix
dcRðxjÞ
dAðiÞ

or
dcRðxjÞ

dLðiÞ
is constructed using a simple dif-

ference method.

Figure 1 shows an example of a 1-D spherical Earth

velocity model and the corresponding Rayleigh wave

fundamental mode phase velocity sensitivity kernels (qcR/

qL and qcR/qA) at 20, 60, and 100 s. Figure 2 shows the

sensitivity kernel image in the period range of 10–125 s

with a period interval of 5 s. It is evident that cR is mostly

sensitive to L (or VSV) at depths around 1/3 wavelength.

Although cR has little sensitivity to A (or VPH) of the upper

mantle, it still has considerably large sensitivity to A (or

VPH) of the upper and middle crust.

The misfit between the predicted and observed data for

azimuthal anisotropy in the NA is defined as

Uc;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nd

XNd

j¼1

âc;sðxjÞ � ac;sðxjÞ
rc;sðxjÞ

� �2

vuut ; ð12Þ

where rc,s(xj) are the standard error of the observed data

ac,s(xj), respectively, which are obtained from surface

wave tomographic inversion (Montagner 1986; Yao et al.

2010).

The azimuthally anisotropic wavespeed of vertically

polarized shear wave can be expressed as

b̂SV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ Gc cos 2wþ Gs sin 2w

q

s
: ð13Þ

Since Gc,s is typically much smaller than L, that is, Gc,s/

L � 1, (13) can be approximated as

b̂SV � VSV 1þ Gc

2L
cos 2wþ Gs

2L
sin 2w

� �

¼ VSV 1þ KSV cos 2ðw� /FÞ½ �
ð14Þ

where KSV and /F are the magnitude of azimuthal

anisotropy (in percent) of VSV and the azimuth angle of

the fast polarization axis, respectively, which are given by

KSV ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĝ2

c þ Ĝ2
s

q
; ð15Þ

UF ¼ 0:5 tan�1ðĜs=ĜcÞ: ð16Þ

3 Application to SE Tibet

Yao et al. (2010) investigated the depth-dependent shear

wavespeed and azimuthal anisotropy in the lithosphere of

SE Tibet. They used the NA to invert for the isotropic shear

wavespeed model in the crust and upper mantle from the

isotropic Rayleigh-wave phase velocity dispersion data in

the period band 10–150 s at each grid point, which is the

same as Step 1 of this study. Then they used the linearized

inversion method by Montagner and Nataf (1986) (see

Eq. (4)) to invert the dispersion data with azimuthal
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anisotropy simultaneously for isotropic and azimuthally

anisotropic shear wavespeeds at depths. Similar approaches

have been taken by Lin et al. (2010) to invert for layered

anisotropic model in the western US.

For the proposed two-step approach to invert for depth-

dependent shear wavespeed azimuthal anisotropy, we have

first validated our method using the synthetic data. We

construct a 1-D layered velocity model with varying mag-

nitudes and fast axes of shear wavespeed azimuthal anisot-

ropy in the crust and upper mantle. Since dominant

anisotropic minerals, e.g., olivine in the upper mantle as well

as mica and amphibole-rich minerals in the crust, will tend to

result in similar fast polarization axes of P- and S-waves as

well as similar ratios of B̂ðiÞc;s ¼ B
ðiÞ
c;s

.
AðiÞ and ĜðiÞc;s ¼

G
ðiÞ
c;s

.
LðiÞ(Barruol and Kern 1996; Montagner and Nataf

1986), we set cðiÞ ¼ B̂
ðiÞ
c;s=ĜðiÞc;s ¼ 1 for each layer for sim-

plicity, similarly as Lin and Ritzwoller (2011). Then we

compute the isotropic part Rayleigh-wave phase velocity

dispersion (Herrmann and Ammon 2004) and azimuthally

anisotropic terms ac,s(x) using Eq. (6) or (7). We follow Step

1 in our proposed procedure to obtain the optimal isotropic

velocity model from the NA and then follow Step 2 to obtain

the ĜðiÞc;s and B̂
ðiÞ
c;s: Our tests show that the inversion results of

ĜðiÞc;s are quite accurate if we only invert for ĜðiÞc;s with c(i) set to

be 1. If we simultaneously estimate ĜðiÞc;s and B̂
ðiÞ
c;s without any

constraints on their ratios, the inversion results of some

model parameters will deviate from the true values and also

have larger uncertainties due to trade-offs between different

model parameters. This is quite similar to surface wave

dispersion inversion for velocity structures. Since it is diffi-

cult to constrain vp structures only from dispersion data, we

usually only invert for vs structures from dispersion data but

relating vp (also density) to vs using some empirical rela-

tionships in the inversion (e.g., Yao et al. 2008).

Then we choose the azimuthally anisotropic phase

velocity dispersion data of Rayleigh waves at the grid point

(101.5�, 28.5�) from Yao et al. (2010) to illustrate the

details of the proposed two-step procedure. In the first step,

the isotropic part dispersion in the period band 10–150 s

(Fig. 3a) is used to invert for the isotropic shear wavespeed

model (with vp and density related to vs) using the NA

following the procedure by Yao et al. (2008). Here the

Moho depth is fixed in the inversion with its value (54 km)

approximately inferred from the receiver function analysis

by Xu et al. (2007). We have eight parameters to be esti-

mated, that is, shear wavespeed perturbations of the three

crustal layers and five upper mantle layers with respect to a

reference model. The final obtained isotropic shear wave-

speed model is the posterior mean model (black line in

Fig. 3b) from the Bayesian analysis of the model ensemble

generated by the neighborhood search.

In the second step, we use the observed data of phase

velocity azimuthal anisotropy ac,s(xj) as well as their

standard error rc,s(xj) at the same grid point (Yao et al.

2010) to estimate depth-dependent azimuthally anisotropic

parameters Gs,c (and Bs,c). Due to worse azimuthal ray path

0

1

2

3

4

5
x 10

Period (s)

dc/dA

20 40 60 80 100 120
Period (s)

D
ep

th
 (

km
)

dc/dL

20 40 60 80 100 120

0

100

200

300

400

Fig. 2 Sensitivity kernel images of qcR/qL and qcR/qA in the period range of 10–125 s. The color bar shows the value of sensitivity. The white

line in the left plot gives depths of 1/3 wavelength of the Rayleigh wave fundamental mode

20 40 60 80 100 120 140
3

3.2

3.4

3.6

3.8

4

4.2

4.4

V
el

o
ci

ty
 (

km
/s

)

Period (s)
3 4 5

0

50

100

150

200

250

Velocity (km/s)

D
ep

th
 (

km
)

(b)(a)

Fig. 3 a The observed isotropic part of the Rayleigh-wave phase

velocity dispersion curve in SE Tibet with standard errors (red x with
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coverage at periods above 100 s, we only use data in the

period band 10–100 s in this step. First, we need to com-

pute the sensitivity kernels qcR/qL and qcR/qA from the

obtained isotropic model (Fig. 3b). Here we choose cðiÞ ¼
B̂
ðiÞ
c;s=ĜðiÞc;s ¼ 1 for all layers. Depth-dependent Gc and Gs are

separately estimated from the observed period-dependent

ac (blue dashed line in Fig. 4) and as (red dashed line in

Fig. 4) using the NA, respectively, with the misfit function

defined as Eq. (12). Here, we estimate Gc,s in the six depth

ranges: upper crust (0–17 km), middle crust (17–35 km),

lower crust (35–54 km), and three upper mantle layers (54–

90 km, 90–140 km, 140–210 km). Figure 5 shows the

posterior mean value (black line) and the corresponding

standard error (shaded area) of each Gc,s/L parameter from

the 1-D PPDFs (Fig. 6). It appears that most 1-D PPDFs for

ĜðiÞc;s ¼ G
ðiÞ
c;s

.
LðiÞ (Fig. 6) show a Gaussian distribution, and

the 1-D PPDFs for Gc/L are systematically narrower than

those for Gs/L, indicating a smaller standard error of Gc/L

than that of Gs/L (see also Fig. 5). This is probably due to the

oscillating feature of as (Fig. 4) that are used for estimating

Gs/L. Figure 7 shows some examples of 2-D PPDFs that are

usually used to quantify the trade-offs between different

model parameters. For this particular example, the correlation

between Gc/L (or Gs/L) of two nearby depth ranges seems

small as indicated by the relatively circular shape of the 2-D

confidence levels.

Using the predicted ac,s (Fig. 4) from the posterior mean

model (Fig. 5), we can compute the magnitude of the

Rayleigh wave azimuthal anisotropy and azimuth of the

fast polarization axis at each period, similar as the

Eqs. (15, 16), and compare with the observed ones as

shown in Fig. 8a. The fitting is quite good in the period

range of 10–70 s with dominant sensitivity to shear

wavespeed structures up to about 150 km. The Gc,s/L in the

depth range of 140–210 km estimated from the NA may

have large uncertainties due to worse fitting of the data in

the period band of 75–100 s. Finally, Fig. 8b shows the

depth-dependent magnitude and fast polarization azimuth

of shear wavespeed azimuthal anisotropy using the

Eqs. (15, 16). In our example, the magnitude of shear

wavespeed azimuthal anisotropy in the crust is smaller

(2 %–3 %) with nearly N–S fast polarization axes, proba-

bly due to the deformation caused by the southward

expansion of the Tibetan crustal material in SW China

(Zhang et al. 2004; Royden et al. 2008). However, the

uppermost mantle layer (54–90 km) exhibits a large mag-

nitude of azimuthal anisotropy (*6 %) with the fast

polarization axis in the ENE–WSW direction, which is

quite different from the pattern of crust azimuthal anisot-

ropy. In the depth range of 90–140 km in the upper mantle,

the shear wavespeed is very low (*0.4 km/s lower than

the global average) and the magnitude of azimuthal

anisotropy is also large (*5 %). However, there exists

significant azimuth difference of the fast polarization axes

in the uppermost mantle layer (54–90 km) and the under-

lying layer (90–140 km) that has much lower shear rigid-

ity. Our results indicate that there could exist large

differences of shear wavespeed azimuthal anisotropy in the

crust and upper mantle in SE Tibet, reflecting complicated

deformation patterns in this region (e.g., Yao et al. 2010;

Yao 2012; Shi et al. 2012; Sun et al. 2012; Chen et al.

2013).
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Fig. 4 The observed phase velocity azimuthal anisotropy terms ac

(dashed blue) and as (dashed red) and the predicted ac (solid blue)

and as (solid red) from the posterior mean model in Fig. 5. The error

bar in red and blue shows the standard errors of the observed ac and

as, respectively, which are obtained from the phase velocity

tomography (Yao et al. 2010)
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PPDFs in Fig. 6 using the NA
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4 Discussion and conclusions

In this study, we propose a two-step approach using the NA

for the point-wise inversion of depth-dependent shear

wavespeeds and azimuthal anisotropy from Rayleigh wave

azimuthally anisotropic dispersion data. Based on the well-

constrained isotropic velocity model obtained from the

isotropic dispersion data, we take a difference scheme to

compute approximate Rayleigh-wave phase velocity sen-

sitivity kernels to azimuthally anisotropic parameters Gc,s

and Bc,s. The use of the global search NA and Bayesian

analysis (Sambridge 1999a, b) allows for more reliable

 Gc/L (0-17 km)                                                          Gc/L (17-35 km)                                                         Gc/L (35-54 km)                

 Gc/L (54-90 km)                                                         Gc/L (90-140 km)                                                        Gc/L (140-210 km)               
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Fig. 6 The 1-D PPDFs (shaded area) for each Ĝc ¼ Gc=L or Ĝs ¼ Gs=L parameter in a certain depth range from the NA. The black line in each

plot indicates the posterior mean value of each parameter
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estimates of depth-dependent shear wavespeeds and azi-

muthal anisotropy as well as their uncertainties.

We compare the results from this two-step global opti-

mization approach with those from the traditional linear-

ized inversion approach (Yao et al. 2010) in Fig. 8. Both

methods show very similar directions of fast axes between

0 and 150 km at depths; however, the magnitude of azi-

muthal anisotropy shows some differences, in particular in

the upper mantle. In the linearized inversion approach, Yao

et al. (2010) imposed vertical smoothing and damping to
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Fig. 7 The 2-D PPDFs (shaded area) from the NA for two different Ĝc ¼ Gc=L (or Ĝs ¼ Gs=L) parameters. The black, blue, and red lines give

the 99 %, 90 %, and 60 % confidence levels, respectively. The white triangle in each plot gives the posterior mean model in Fig. 6
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stabilize the inversion results (Montagner and Nataf 1986).

The vertical smoothing (or correlation) length is 20 km at

the surface and gradually increases to about 35 km at

200 km depth (Yao et al. 2010). However, in the NA

approach, we only fit the observed data and do not impose

any model regularization terms in the misfit function

(Eq. 12). This may explain the fact that the recovered

magnitude of azimuthal anisotropy from our approach is

larger than that from the linearized inversion approach in

the upper mantle. However, both methods show that the

upper mantle azimuthal anisotropy is stronger than that in

the crust. Since we ignore the qcR/qF terms in the forward

problem, this may also introduce some differences of the

inversion results.

In the proposed approach, we invert for Gc and Gs

separately using the misfit function defined in Eq. (12). We

can also invert for Gc and Gs simultaneously by defining a

new misfit function U = Uc ? Us. With this new misfit

function, we have investigated the inversion results and the

model standard errors from the NA using synthetic data.

Our results show that some of the model parameters are not

well estimated from the NA and have larger uncertainties

compared to the separated inversion scheme. This is

probably because the number of model parameters has

been doubled in the simultaneous inversion approach,

therefore introducing more trade-offs between different

parameters. So it is more reliable to invert for Gc and Gs

separately.

Surface waves can provide better depth-dependent azi-

muthal anisotropy (Yao et al. 2010; Lin and Ritzwoller

2011) than shear wave splitting measurements in the crust

and upper mantle (Savage 1999; Wang et al. 2008).

Therefore, it may provide more reliable constraints on crust

and upper mantle deformation patterns by examining radial

variations of azimuthal anisotropy. Modeling of receiver

functions can give constraints on layered anisotropy in the

crust (e.g., Ozacar and Zandt 2004; Levin et al. 2008)

although this approach is still very challenging in real

practice. The Moho converted Pms phase splitting analysis

from receiver functions can also provide constraints on

average crustal azimuthal anisotropy, for instance, in SE

Tibet (Xu et al. 2006; Sun et al. 2012; Chen et al. 2013;

Sun et al. 2013). However, there still exists considerable

inconsistency among these results. For example, Chen et al.

(2013) and Sun et al. (2013) found that the splitting time of

the Pms wave is smaller than 0.3 s at most stations in SE

Tibet. However, Sun et al. (2012) used a more compre-

hensive analysis method and found 0.5–0.9 s splitting time

of the Pms wave at a few stations in regions with thick crust

in SE Tibet. Therefore, results of crustal azimuthal

anisotropy from receiver function analysis may still have

some uncertainties due to the use of different methods and

data selection criteria.

Montagner et al. (2000) derives formulas to compute the

shear wave splitting time and fast axes from depth-

dependent Gc,s and L, which provides a direct link between

shear wave splitting measurements and shear wavespeed

azimuthal anisotropy from surface wave data. For instance,

Yao et al. (2010) computed the contribution of shear wave

splitting from crustal azimuthal anisotropy obtained from

surface wave data and found that the thick crust in SE Tibet

may contribute almost 1 s splitting time, which is close to
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the observed shear wave splitting time in that region. Their

results suggest that the contribution of crustal anisotropy to

shear wave splitting may be significant in SE Tibet, simi-

larly as inferred from the receiver function anisotropy

analysis (Sun et al. 2012). However, shear wave splitting

analysis from crustal earthquakes in this region (Shi et al.

2012; Chang et al. 2014) indicates much smaller crustal

azimuthal anisotropy (splitting time about 0.01–0.03 s per

10 km). Although different methods have their uncertain-

ties in estimation of crustal azimuthal anisotropy, it is still

very puzzling that there exist large differences on the

estimated splitting time from crustal anisotropy in different

studies. Therefore, in the future it is very important to

integrate different datasets together, for instance, aniso-

tropic dispersion data, receiver functions, and shear wave

splitting measurements, to better constrain the depth-

dependent azimuthal anisotropy and deformation patterns

in the crust and upper mantle in SE Tibet and other tec-

tonically active regions in the world.
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