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S U M M A R Y
Numerical solvers of wave equations have been widely used to simulate global seismic waves
including PP waves for modelling 410/660 km discontinuity and Rayleigh waves for imaging
crustal structure. In order to avoid extra computation cost due to ocean water effects, these
numerical solvers usually adopt water column approximation, whose accuracy depends on
frequency and needs to be investigated quantitatively. In this paper, we describe a unified
representation of accurate and approximate forms of the equivalent water column boundary
condition as well as the free boundary condition. Then we derive an analytical form of the
PP-wave reflection coefficient with the unified boundary condition, and quantify the effects
of water column approximation on amplitude and phase shift of the PP waves. We also study
the effects of water column approximation on phase velocity dispersion of the fundamental
mode Rayleigh wave with a propagation matrix method. We find that with the water column
approximation: (1) The error of PP amplitude and phase shift is less than 5 per cent and 9◦

at periods greater than 25 s for most oceanic regions. But at periods of 15 s or less, PP is
inaccurate up to 10 per cent in amplitude and a few seconds in time shift for deep oceans. (2)
The error in Rayleigh wave phase velocity is less than 1 per cent at periods greater than 30 s
in most oceanic regions, but the error is up to 2 per cent for deep oceans at periods of 20 s or
less. This study confirms that the water column approximation is only accurate at long periods
and it needs to be improved at shorter periods.

Key words: Numerical approximations and analysis; Body waves; Surface waves and free
oscillations; Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

Thanks to the ever increasing computational power, numerical sim-
ulation of global seismic wave propagation has become an effective
approach for studying structure and dynamics of the Earth, with
methods such as finite difference method, finite element method,
pseudospectral method and spectral element method (SEM; Igel
et al. 1995; Bao et al. 1998; Cormier 2000; Wang et al. 2001;
Komatitsch et al. 2002; Capdeville et al. 2005; Zhang & Chen
2006; Moczo et al. 2007). The finite difference method can be
implemented straightforwardly for serial or parallel computation
with high efficiency (Igel et al. 1995; Zhang & Chen 2006). The
finite element method can deal with complex topography and un-
structured meshes, thus is particularly desirable for geologically
complex regions (Bao et al. 1998; Moczo et al. 2007). The pseu-
dospectral method accurately calculates spatial derivatives in the
wave number domain with a fast Fourier transform, therefore boast-
ing of high speed and low numerical dispersion (Cormier 2000;
Wang et al. 2001). The SEM combines the flexibility of the finite-
element method and the accuracy of the pseudospectral method, and

can handle simulation of complicated Earth models, including to-
pography, lateral heterogeneity, sharp contrasts and self-gravitation
(Komatitsch et al. 2002; Komatitsch & Tromp 2002a,b). In conjunc-
tion with abundant waveform data from global seismic networks,
the above numerical methods have been widely applied to study
structures of the Earth’s interior (Igel et al. 1995; Cormier 2000;
Zhang & Chen 2006; Baker & Roecker 2014) and earthquake source
parameters (Liu et al. 2004).

These methods treat the land surface as a free boundary with
zero traction. While in the oceanic area which covers most of the
Earth’s surface, the surface is assumed to be a free boundary with
zero pressure, and the seafloor has a boundary condition of con-
tinuity of normal component of traction and particle displacement
or velocity (i.e. zero tangential traction, and no tangential displace-
ment or velocity involved). However, acoustic wave speed in the
ocean is usually significantly smaller than P or S wave speed in
the crust, therefore, finer mesh is needed in the numerical simu-
lation of seismic wave propagation, which results in a significant
increase in memory requirement and computing time. Moreover, it
is difficult and ineffective in terms of numerical cost to mesh the
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continent-ocean margin if the ocean water is meshed (Capdeville
& Marigo 2008). Similar problem occurs in the studies of electro-
magnetic scattering and acoustics, some researchers find that the
effective boundary method can be used to dramatically reduce the
computation cost without much loss of accuracy (Niklasson et al.
2000; Zakharov 2006; Péron 2014). As the first order term of the
above effective boundary for wave propagation in the fluid layer,
Komatitsch & Tromp (2002b) assume that the entire water column
moves at the same particle velocity, and derive the effective bound-
ary equation of ocean water column loading in the SEM scheme
(eq. 28 in Komatitsch & Tromp 2002b). In this case, the pressure
load is a product of density, thickness of ocean water and normal
component of the particle acceleration of the seafloor. After adopt-
ing this water column approximation (WCA), there is no need to
simulate seismic wave propagation in the ocean water, and effects
of the ocean water are accounted for with a new boundary con-
dition on the surface of the solid Earth instead of a free boundary
condition, thus the computational efficiency is improved effectively.
Therefore, SEM with this approximation has been widely used in
global seismic wave simulation because of improved performance
and convenience in constructing meshes. For example, SEM is suc-
cessfully adopted in regional and global tomographic inversions,
which reveal interior of the Earth with unprecedented details (Tape
et al. 2009; Chen et al. 2015; French & Romanowicz 2015).

SEM also plays an important role on studies of PP waves
(Ritsema et al. 2002) and Rayleigh waves (Stich & Morelli 2007;
Bozdağ & Trampert 2008; Ruan & Zhou 2012; Liu & Zhou 2013).
The unique geometry of PP ray paths makes it sensitive to struc-
tures underneath the midpoints between the earthquake and seismic
station. Compared with the direct P waves, mantle structures under
the oceans are much better sampled with PP waves and PP pre-
cursors due to reflection at mantle discontinuities such as the 410
and 660 discontinuities (Fukao et al. 2003). The differential times
between PP waves and PP precursors as well as their amplitude
ratios provide crucial information of depth and velocity contrast
of the mantle discontinuities (Deuss et al. 2006; Deuss 2009). In
these studies, PP waves are assumed to be normal and thus can be
used as an effective reference phase. However, as shown by Ritsema
et al. (2002), PP amplitude shows variability due to 3-D structures.
Furthermore, as will be demonstrated later on, the PP reflection co-
efficient is not a real number but complex for the effective boundary
condition of WCA, thus leading to a phase shift (equivalent to time
shift) and change of reflection amplitude. Therefore, it is necessary
to quantify the effects of WCA on PP waves when SEM is used
to simulate global PP waves. Furthermore, Rayleigh waves usually
dominate teleseismic waveforms, and provide valuable information
for study of crustal and upmost mantle structure of the Earth and
have been used extensively in global or regional tomography (Yao
et al. 2006; Yang et al. 2007; Yao et al. 2008; Ekström 2011). As
the majority of the Earth’s surface is covered with ocean water,
the effects of WCA on surface wave dispersion also need to be ex-
plored in order to achieve robust tomography of crustal and mantle
structure.

Indeed, the accuracy of the approximation in simulating body and
surface waves has been qualitatively investigated, either by compar-
ing with exact solution or with observed seismic data. Komatitsch
& Tromp (2002b) reported that WCA is only valid at periods greater
than 20 s when the thickness of ocean is 3 km, as they observed that
the synthetic seismograms computed by SEM with WCA match
well with normal-modes calculations at periods greater than 25 s.
Komatitsch et al. (2002) also found that the observed seismic waves
are usually well explained with synthetics for body waves with pe-

riods greater than 18 s and surface waves with periods greater than
40 s. But at shorter periods, there could be substantial mismatch,
and they suspected that it may result from inaccurate crust model
or the WCA. Theoretically, the effectiveness of WCA relies on the
ratio between the thickness of ocean water and seismic wave length,
and higher accuracy should be expected for small ratios. However,
the thickness of ocean water ranges from dozens of meters in coastal
regions to more than 10 km in the deepest subduction trench. It is
expected that for some oceanic region, the error of WCA may be
substantial when the ocean bathymetry is comparable to seismic
wave length.

Therefore, we investigate quantitatively the accuracy of WCA
in this paper. We first derive a unified boundary condition that
can account for free surface, the precise and approximate forms of
water column loading effects. Then, we derive an analytical form
of PP reflection coefficient, and explore the effects of WCA on
the amplitude and phase shift of PP reflection. We also explore the
effects of WCA on surface wave dispersion, after we implement
an algorithm in computing phase velocity of fundamental mode
Rayleigh waves for multilayered half-space models (Chen 1993). In
the last, we discuss limitation of our approach and further studies
that could be performed in the future.

2 A U N I F I E D S U R FA C E B O U N DA RY
C O N D I T I O N W I T H A F LU I D L AY E R

In contrast to the free surface boundary condition, the normal com-
ponent of the traction (Tn) on seafloor is no longer zero, though
the tangential component can be reasonably assumed to be zero
(Tt = 0). The approach of effective boundary condition such as
WCA attempts to relate the normal traction Tn with particle accel-
eration, thus introducing mixed boundary condition. For the case of
incident planar wave on a water layer of constant thickness H, exact
boundary condition can be obtained by applying the condition of
zero tangential traction, and continuity of normal traction and par-
ticle displacement (Figs 1a and b). For simplicity, the solid Earth is
parameterized as a homogeneous half-space.

As there is only longitudinal wave in seawater, the wavefield
in the water layer can be decomposed into upgoing and downgo-
ing P waves. Within the framework of planar wave theory (Aki
& Richards 2002), the P-wave potential in the water layer is
as follows (sign convention is positive for downwards in the Z
direction):

φw = Cu exp[iω(px − ηwz − t)] + Cd exp[iω(px + ηwz − t)]

(1)

with

ηw =
√

1

αw
2

− p2 =
√

1

αw
2

− 1

c2
,

where Cu and Cd are the coefficients for upgoing and downgoing
P wave, respectively, and p is the horizontal slowness, αw is P-wave
velocity in fluid layer, ηw is also called the vertical slowness and
c = 1/p is the phase velocity.

Since the bulk modulus of air is orders of magnitude smaller
than that of the water, the surface of the ocean is considered a free
boundary on which the traction is zero. Based on eq. 5.21 in Aki
& Richards (2002), and imposing the free boundary condition into
eq. (1), we get

Cu exp (iωηw H ) + Cd exp (−iωηw H ) = 0. (2)
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Accuracy of water column approximation 1317

Figure 1. Geometry and coordination system of water column approximation. (a) Upgoing and downgoing P (acoustic) wave in a homogeneous fluid layer
with thickness H over a half-space solid Earth. (b) The acoustic wave propagation is approximated with effective boundary condition involving of normal
traction and vertical displacement on the boundary.

Then a new coefficient C can be defined to relate Cu and Cd :

Cu = C

2
exp (−iωηw H )

Cd = −C

2
exp (iωηw H ) . (3)

The wavefield in the fluid layer can be rewritten as

φw = C

2
exp (−iωηw H ) exp[iω(px − ηwz − t)]

−C

2
exp (iωηw H ) exp[iω(px + ηwz − t)] (4)

Also based on eq. 5.21 in Aki & Richards (2002) and eq. (4), the
normal component of particle displacement in the sea layer is

uz = −1

2
iωηwC exp [iω (px − t)]

×[
exp (iωηw H ) exp (iωηwz)

+ exp (−iωηw H ) exp (−iωηwz)
]

(5)

and the normal stress is

σzz = 1

2
ρwω2C exp [iω (px − t)]

×[
exp (iωηw H ) exp (iωηwz)

− exp (−iωηw H ) exp (−iωηwz)
]
. (6)

Therefore, the normal component of particle displacement on the
seafloor is

uz |z=0 = −iωηw cos(ωηw H )C exp [iω (px − t)] (7)

and the normal traction is

Tn = σzz |z=0 = iρwω2 sin(ωηw H )C exp [iω (px − t)] (8)

Combining eqs (7) and (8), we get the following relationship:

σzz |z=0 = −ρwω

ηw

tan(ωηw H ) uz |z=0. (9)

When ωηw H is sufficiently small, eq. (9) can be approximated as

σzz |z=0 = −ρwω2 H uz |z=0, (10)

which is consistent with equations (eqs 26–28) of WCA in
Komatitsch & Tromp (2002b).

Figure 2. Incident P wave and reflect P wave and SV wave with the unified
boundary condition. The density, P-wave velocity and S-wave velocity are
denoted as ρ, α and β, respectively. The incident P wave is normalized
(coefficient is 1). A and B are the coefficients of the reflected P and S waves.

For the case that the thickness of fluid layer is zero, eq. (9) is just
reduced to free boundary condition:

σzz |z=0 = 0. (11)

Actually, eqs (9)–(11) can be represented with a unified form

σzz |z=0 = k uz |z=0, (12)

where, for the exact boundary condition of a fluid layer,

k = −ρwω

ηw

tan(ωηw H ) (13)

for the approximate boundary condition,

k = −ρwω2 H (14)

and for the case of free boundary condition, k is just 0.

3 T H E E F F E C T S O N P P WAV E S O F W C A

To investigate the effects of WCA on PP wave propagation,
we compute the amplitude and phase of PP waves reflected at
seafloor. As shown in Fig. 2, a plane P wave is propagating with
slowness p, then P wave and SV wave are generated after reflection.
The thickness of fluid layer is H , the density and P-wave velocity of
water are ρw and αw , respectively. The density, P-wave velocity and
S-wave velocity in the solid half-space are ρ, α and β, respectively.
The coefficient of incident P-wave potential is normalized as 1, and
the coefficients of reflect P- and S-wave potentials are denoted as A
and B, respectively.
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Based on the assumption of plane wave, the incident P-wave,
reflected P-wave and S-wave potential functions are as follows:

φinc = exp[iω(px − ηαz − t)] (15)

φref = A exp[iω(px + ηαz − t)] (16)

ψref = B exp[iω(px + ηβ z − t)], (17)

where

ηα =
√

1

α2
− p2 =

√
1

α2
− 1

c2
(18)

ηβ =
√

1

β2
− p2 =

√
1

β2
− 1

c2
. (19)

For the solid–fluid interface (the seafloor), the shear traction is
zero. Based on eqs 5.21 and 5.22 in Aki & Richards (2002) and
eqs (15)–(17) above, we get

2ρβ2iωpiωηα (A − 1) + ρω2
(
1 − 2β2 p2

)
B = 0. (20)

Similarly, the normal displacement and normal traction from the
side of solid half-space are

uz |z=0 = [iωηα (A − 1) + iωpB] exp [iω (px − t)] (21)

σzz |z=0 = [−ρω2(1 − 2β2 p2)(A + 1) + 2ρβ2iωpiωηβ B
]

× exp [iω (px − t)] . (22)

Eqs (21) and (22) are related as follows:

σzz

uz

∣∣∣∣
z=0

= −ρω2(1 − 2β2 p2)(A + 1) + 2ρβ2iωpiωηβ B

iωηα (A − 1) + iωpB
. (23)

Solving eqs (20) and (23) and imposing the unified boundary
condition (eq. 12), we find that

A =
−(

1 − 2β2 p2
)2 + 4β4 p2ηαηβ + i

ηα

ρω
k

(1 − 2β2 p2)2 + 4β4 p2ηαηβ + i
ηα

ρω
k

(24)

B = −4β2 pηα

(
1 − 2β2 p2

)
(1 − 2β2 p2)2 + 4β4 p2ηαηβ + i ηα

ρω
k
. (25)

Eqs (24) and (25) define the reflection coefficients of PP and PS
waves for the unified boundary. Note that the reflection coefficients
of PP and PS waves are complex numbers when ηα

ρω
k is nonzero,

and it can result in additional phase shift, that is, time shift in the
reflected waves. For the case of free boundary condition (k = 0),
the PP and PS reflection coefficients are same as eqs 5.25 and 5.26
in Aki & Richards (2002), implying that the above derivation is
correct.

Combining eqs (24) and (13) or (14), we find that the PP reflection
coefficient relies on angular frequency ω and H as well as slowness
p, unlike the case of free boundary condition where the PP reflection
coefficient is frequency independent. After Lay & Wallace (1995),
we define a dimensionless frequency


 = ωH

αw

. (26)

It is straightforward that the reflection coefficient of PP waves
only relies on the dimensionless frequency 
 and slowness p.

As the amplitude ratio and differential time between PP and its
precursors are used to determine the velocity contrast and depth of

410 and 660 km mantle discontinuities, we calculate the amplitude
and phase of PP reflection coefficient with different dimensionless
frequency 
 and slowness p, respectively. The range of dimension-
less frequency 
 is chosen according to the period of teleseismic PP
used in previous studies. Usually, the filtering range is between 8 and
75 s (Flanagan & Shearer 1999; Chambers et al. 2005; Deuss et al.
2006; Deuss 2009) and then the range of dimensionless frequency
is 0.22 ≤ 
 ≤ 2.09, assuming an average ocean thickness of 4 km
(Stewart 2004). Slowness p can be calculated from epicentral dis-
tances from 80◦ ≤ � ≤ 140◦ (Flanagan & Shearer 1999; Shearer
& Flanagan 1999; Deuss 2009) and then the range of slowness is
found to be 0.055 s km−1 ≤ p ≤ 0.075 s km−1 with the TAUP
program (Crotwell et al. 1999) for the PREM model (Dziewonski
& Anderson 1981).

In Fig. 3, the absolute amplitude of PP reflection coefficient is
displayed versus dimensionless frequency 
 and slowness p for the
case of a uniform ocean water layer above half-space solid Earth
(Table 1). For a given slowness p = 0.055 s km−1 (Fig. 3a), the
amplitude of PP reflection coefficient does not change for different
dimensionless frequency 
 for the case of free surface boundary
(H = 0). However, with the WCA boundary condition, the am-
plitude of PP reflection coefficient increases monotonically with
dimensionless frequency 
. In contrast, for the case of exact wa-
ter column boundary, the amplitude of PP reflection coefficient
varies periodically with dimensionless frequency 
, and reaches
maximum near the multiplies of π

2 , which is caused by infinity of
tan( π

2 ). When 
 is small (<1.0), PP amplitude are almost identical
for the approximate and the exact water layer condition, suggest-
ing that WCA is valid. Only when 
 is near π

2 , the difference
in PP amplitude is substantial (up to 13 per cent) between the
approximate and exact boundary conditions, in this case the pe-
riod of PP waves is about 11 s for ocean thickness of 4 km. This
suggests that 10 s period is too short in using PP waves to infer
properties of mantle discontinuities, and longer periods are needed.
The above features of PP amplitude are similar when slowness
is different, such as 0.065 s km−1 (Fig. 3b) and 0.075 s km−1

(Fig. 3c).
Then we discuss the variation of PP amplitude versus slowness

p when dimensionless frequency 
 is fixed (Figs 3d–f for dimen-
sionless frequency 
 of 0.5, 1.0 and 1.5, respectively). For the case
of free surface boundary, PP amplitude decreases monotonically
from 1 to 0 for slowness p in the range of 0–0.16 s km−1, then PP
amplitude increases for p > 0.16 s km−1. However, PP amplitude
increases to 1 rapidly when slowness p is close to 0.2 s km−1. The
trend is identical to those described in Lay & Wallace (1995) and
Aki & Richards (2002), implying that our numerical implementa-
tion is correct. The PP amplitudes for the case of approximate and
exact water layer boundary is similar to the case of free surface
boundary, except that they do not drop to zero at p = 0.16 s km−1.
In the range of slowness p (0.055 s km−1 ≤ p ≤ 0.075 s km−1),
PP amplitudes are almost same for the approximate and exact water
layer boundary when dimensionless frequency 
 = 0.5 or 1.0. But
they are quite different when dimensionless frequency 
 = 1.5,
which is near π

2 , consistent with Figs 3(a)–(c). Overall, the match in
PP amplitude between approximate and exact water layer boundary
seems to be controlled mostly by dimensionless frequency 
, and
WCA is valid when dimensionless frequency 
 is small (<1.0). In
contrast, the validity is much less sensitive to slowness p, though it
can be observed that the error of WCA is a little bit larger when p
changes from 0.055 to 0.075 s km−1.

Similarly, we investigate variation of the phase of PP reflection
coefficient versus dimensionless frequency 
 and slowness p. In
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Accuracy of water column approximation 1319

Figure 3. PP reflection coefficient amplitude versus dimensionless frequency 
 (a–c), or versus slowness p (d–f). Black, red and blue lines indicate cases of
free boundary condition, exact boundary condition and approximate boundary condition. The green dashed lines indicate the range of dimensionless frequency
or slowness usually adopted in studies of teleseismic PP wave.

Table 1. Parameters of the ocean water layer and the half-space solid
Earth.

Depth to bottom (km) ρ (g cm−3) β (km s−1) α (km s−1)

4.0 1.00 0.00 1.50
∞ 3.00 3.00 5.00

Fig. 4(a), the slowness p is 0.055 s km−1. For the case of free
surface boundary, the PP phase is does not change with different
dimensionless frequency 
 and is −180◦ (−π ), consistent with the
fact that PP reflection coefficient is negative real number (Aki &
Richards 2002). However, for the case of approximate water layer
boundary, PP phase increases monotonically with dimensionless
frequency 
. In contrast, for exact water column boundary, PP
phase changes periodically with dimensionless frequency 
, and
the largest gradient is near the integer times of π /2. When 
 is
small (<1.0), PP phase is almost identical for the approximate and
exact water layer boundary, arguing that WCA is valid. But when 


is near π/2, the difference in PP phase is substantial, similar to the
pattern for PP amplitude versus 
. The above pattern of PP phase
variation is similar for different slowness (Fig. 4b, p = 0.065 s
km−1; Fig. 4c, p = 0.075 s km−1). In Figs 4(d)–(f), variation of
PP phase versus slowness p is displayed for 
 of 0.5, 1.0 and 1.5,
respectively, and we observe that PP phase does not change much
for the slowness range of teleseismic PP waves (0.055–0.075 s
km−1). For small 
 (0.5, Fig. 4d), PP phase with WCA matches
that with exact boundary condition very well. But for 
 = 1.0,
there is phase difference about 5◦. Actually, 
 of 1.0 corresponds
to period of 17 s for ocean water depth H of 4 km and water speed
of 1.5 km s−1. Thus 5◦ phase difference is equivalent to time shift
of 17 × 5/360 s–0.2 s, or change of 1 km in estimating depth of
mantle discontinuity (assuming average mantle P velocity of 10 km
s−1). And for 
 = 1.5 (the period of PP waves is around 10 s for

ocean thickness H of 4 km), the phase difference is up to 90◦. In
this case, the mismatch in PP phase is equivalent to time shift of a
quarter of the period of PP waves (2.5 s), which may cause error
of 12.5 km in estimating depth of mantle discontinuity. Therefore,
PP waves with period much longer than 10 s should be used to
resolve depth of mantle discontinuity, when WCA is adopted in
numerical simulations. Therefore, both Figs 3 and 4 argue that
validity of WCA is mainly controlled by 
 instead of slowness p.
And this is not unexpected, as k in the unified boundary condition
is the controlling parameter and it much more depends upon 
 than
slowness.

As the water depth in oceanic region varies substantially from
dozens of meters to ten thousand meters, it would be helpful to
quantify validity of WCA for global ocean. We define critical period
as the minimum period of PP waves which lead to error in PP
amplitude less than 5 per cent and phase difference less than 9◦.
The error of 5 per cent is chosen because usually 10 per cent error
is usually adopted as a small number, and an error of 9◦ in phase
is equivalent to 2.5 per cent of period of PP waves, which is also
usually viewed as very small error. Slowness p of 0.075 s km−1 is
chosen in the computation. For every 5 × 5 min2 area of oceanic
region, we extract water depth from ETOP5 model (Edwards 1988)
and compute the critical period beyond which WCA is valid. From
Fig. 5(a), we observe that the critical period for 5 per cent accuracy
in PP amplitude is 25 s for most area of the oceans, about or less
than 5 s in shallow seas, about 15 s near mid-ocean ridges and about
40 s at deep trenches. From Fig. 5(b), we observe that the critical
period for 9◦ accuracy in PP phase is about 30 s for most area of
global oceans, about or less than 5 s in the shallow seas, about 20 s
near mid-ocean ridges and around 45 s at deep trenches.

We also generate a map of error in PP amplitude (Supporting
Information Fig. S1) and time shift due to PP phase error (Sup-
porting Information Fig. S2) at various periods. At period of 15 s,
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Figure 4. PP phase shift versus dimensionless frequency 
 (a–c), or versus slowness p (d–f). Black, red and blue lines indicate cases of free boundary
condition, exact boundary condition and approximate boundary condition. The green dashed lines indicate the range of dimensionless frequency or slowness
usually adopted in studies of teleseismic PP wave.

the error in PP amplitude is larger than 10 per cent in most part
of the Pacific Ocean, deep ocean basin of Atlantic Ocean and near
mid-ocean ridges. At period of 20 s, the error is less than 2 per cent
for majority of oceanic regions. At period of 25 s, the error is less
than 1 per cent in most part of global oceans, except near very deep
trenches. Supporting Information Fig. S2 shows distribution of time
shift due to WCA, which is obtained by multiplying period of PP
waves and the phase shift relative to 2π . At period of 15 s, the time
shift is more than 5 s in some area of the Pacific Ocean, deep basin
of Atlantic Ocean and near mid-ocean ridges. At period of 20 s, the
time shift is less than 1 s. And at period of 25 s, the time shift is
very small for most part of the ocean, except near deep trenches.
Both Supporting Information Figs S1 and S2 suggest that WCA is
valid at period of 25 s or longer.

4 T H E E F F E C T S O N S U R FA C E WAV E
O F W C A

Calculation of Rayleigh wave dispersion is a classical problem
in seismology, and many methods have been developed. For a
flat-layered Earth model, Thomson & Haskell (Thomson 1950;
Haskell 1953) proposed the propagation matrix method (also called
as Thomson-Haskell method) to solve the eigenvalue problem of
the system of differential equations. But this method is sometimes
unstable and suffers numerical overflow and loss of precision at
high frequency (Buchen & Ben-Hador 1996; Wang 1999; Ken-
nett 2009). Later on, many improvements on Thomson-Haskell
method are adopted to overcome these problems, such as the delta
matrix method (Pestel & Leckie 1963; Watson 1970; Wang &
Herrmann 1980; Buchen & Ben-Hador 1996), Schwab–Knopoff
method (Schwab 1970; Schwab & Knopoff 1970, 1972), Abo-Zena
method (Abo-Zena 1979), Kennett reflection and transmission (R/T)
matrix method (Kennett 1974; Kennett & Kerry 1979) and gener-
alized R/T coefficient method (Luco & Apsel 1983; Chen 1993; Pei

et al. 2008, 2009; Kennett 2009). Even though R/T methods are
not necessarily the most efficient one of these improved methods
(Buchen & Ben-Hador 1996), they are more numerically stable at
high frequency. For example, Chen’s method is one of the gener-
alized R/T coefficient methods, and can calculate phase velocity
at frequency higher than 100 Hz (Chen 1993). Moreover, free sur-
face boundary condition is explicitly imposed in Chen’s algorithm,
which can be straightforwardly extended for new boundary condi-
tion. Therefore, we adopt Chen’s method to compute Rayleigh wave
dispersion for the case of unified boundary condition and quantify
the accuracy of WCA in simulating Rayleigh wave propagation.
Of course classical normal modes code or other propagation matrix
code can also be extended for new boundary condition, and this will
be done in the future.

As the published generalized R/T method only implemented free
surface boundary condition, we will reformulate the method so as
to account for the unified boundary condition. For the model of a
fluid layer above layered solid Earth and convention of coordinate
system shown in Fig. 6, the wavefield of P–SV wave in jth layer
can be described with the displacement vector D( j) = [ Ur Uz ]T

and stress vector 
( j) = [ 
r z 
zz ]T which can be solved with the
following ordinary differential equations in depth z:

d

dz

(
D( j) (z)

( j) (z)

)
= A( j)

(
D( j) (z)

( j) (z)

)
. (27)

For each homogeneous layer, the displacement and stress vector
can be computed with amplitudes of upgoing and downgoing waves
(Cu and Cd ):

(
D( j)(z)

( j)(z)

)
=

(
E ( j)

11 E ( j)
12

E ( j)
21 E ( j)

22

) (
�

( j)
d (z) 0
0 �( j)

u (z)

) (
C ( j)

d

C ( j)
u

)
(28)
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Figure 5. The critical periods for PP wave with WCA: (a) for amplitude error ≤5 per cent; (b) for phase shift ≤9◦.

where E and � are defined in Chen (1993). Then the generalized
reflection and transmission coefficients (R̂du and T̂d ) are defined
accordingly:⎧⎨
⎩

C ( j)
u = R̂( j)

du C ( j)
d

C ( j+1)
d = T̂ ( j)

d C ( j)
d

. (29)

And in his formulation, the free surface boundary condition is
reduced to the following equation:

1 − R̂(0)
ud R̂(1)

du = 0 (30)

and

R̂(0)
ud = −

(
E (1)

21

)−1
E (1)

22 �(1)
u (0). (31)

In our method, the free boundary can be readily adapted for the
unified boundary condition

R̂(0)
ud = −

(
E (1)

21 − K E (1)
11

)−1 (
E (1)

22 − K E (1)
12

)
�(1)

u (0), (32)

where K is a 2 × 2 sparse matrix involving of k, the coefficient
defined in eq. (12):

K =
[

0 0
0 k

]
. (33)

When k = 0, eq. (32) is reduced to the eq. (31). After imposing
eq. (32), Chen’s (1993) method is readily modified to calculate the
Rayleigh wave phase velocity for the case of a fluid layer above
solid media with WCA or exact boundary conditions.
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Figure 6. Configuration and coordinate system of a multilayered half-space
with the unified boundary condition.

However, the matrix method still fails at high frequency. In this
case, Rayleigh wave energy is only concentrated in the top solid
layer, which is essentially equivalent to half-space. It is difficult to
compute the fundamental mode phase velocity of Rayleigh wave
from the secular function in this situation (Chen 1993). To solve
this problem, Chen (1993) developed an asymptotic method that
involves the boundary condition. Therefore, the asymptotic method
needs to be reformulated to account for the unified boundary with
water layers. After plugging eqs (12) and (29) into eq. (28), we
obtain[(

E (1)
21 − K E (1)

11

)
+

(
E (1)

22 − K E (1)
12

)
�u (0) R̂(1)

du

]
C (1)

d = 0. (34)

Eq. (34) has a non-trivial solution only for some particular phase
velocities that satisfy the following secular equation

det
[(

E (1)
21 − K E (1)

11

)
+

(
E (1)

22 − K E (1)
12

)
�u (0) R̂(1)

du

]
= 0. (35)

Following Chen (1993), we define E (1)
21 − K E (1)

11 = ωA(c) and
(E (1)

22 − K E (1)
12 )�u(0)R̂(1)

du = ωB(c), then use his eqs (A7)–(A9) to
calculate the Rayleigh wave phase velocity at high frequency, via
introducing eq. (36) which is derived from eq. (27) and eq. (9) of
Chen (1993). Chen’s (1993) method also involves of a parameter
cR which is the value of c when function R(c) (in eq. 36) equals
to 0.

R(c) = 4

(
1

c

)2

γ̄ (1)(c)ν̄(1)(c) −
{(

1

c

)2

+ (ν̄(1)(c))2

}2

− iηα

ρβ4ω
k.

(36)

With the algorithm for both low frequency and high frequency
illustrated, we implement a computer code (RTgen) for computing
fundamental mode Rayleigh wave phase velocity dispersion with
MATLAB language. To test the code, we choose the case of 4 km
thick water layer above the layered solid crustal model (Table 2). To
verify that our implemented code works correctly, we also use the
CPS package (Wang & Herrmann 1980; Herrmann 2013) to com-
pute fundamental Rayleigh phase velocity for free surface boundary

Table 2. Parameters of the ocean water layer above layered
crustal model.

H (km) ρ (g cm−3) β (km s−1) α (km s−1)

h 1.00 0.00 1.50
3.0 2.61 2.59 5.09
3.0 2.90 3.65 6.60
3.0 3.05 3.91 7.11
∞ 3.35 4.65 8.15

Figure 7. Comparison of fundamental phase velocity computed by RTgen
(solid line) and CPS (dash line) with the velocity model in Table 2, for the
cases of free boundary condition (black), exact boundary condition (blue)
and approximate boundary condition (red). The water layer thickness is
4 km.

condition and water layer in which exact boundary conditions are
satisfied at the interface between water and crust. In Fig. 7, a com-
parison between phase velocity from RTgen and CPS is displayed,
showing excellent matches for the free surface case (solid line for
RTgen and dash line for CPS), as well as for the case of accurate
water column boundary, implying correct implementation of algo-
rithms in RTgen. As for the comparison of fundamental mode phase
velocity with approximate and exact water column boundary, the
former is very close to the latter in long periods (T > 20 s), which
indicates that the validity of WCA to represent the effects of oceanic
layer on Rayleigh waves. But at shorter periods (2 s < T < 20 s),
the fundamental mode phase velocity with WCA is larger than the
one with exact water column boundary. At even shorter periods
(T < 2 s), the phase velocity with WCA drops sharply and differs
from that with exact boundary condition, suggesting that the WCA
is no longer effective to account for the effects of water layer on
Rayleigh waves at high frequency.

The accuracy of WCA for different ocean depths (H = 0.2, 1.0,
4.0 and 8.0 km) is displayed in Fig. 8. For the ocean depth H of
0.2 km, the phase velocities for free surface, approximate boundary
and exact boundary condition are almost the same for periods above
2 s. This is understandable because the 0.2 km thickness is much
shorter than the wavelength, and the ocean is just thin enough to be
negligible. For the ocean depth H of 1.0 km, the phase velocity with
approximate and exact boundary condition matches with each other
at periods over 15 s. But for periods less than 5 s, their mismatch
is substantial, suggesting that approximate boundary condition no
longer works. The case of 4.0 km ocean depth has been described in
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Figure 8. Comparison of fundamental phase velocity dispersion with different water layer depth, for the cases of free boundary condition (black), exact
boundary condition (blue) and approximate boundary condition (red).

Fig. 7. And for the ocean depth of 8.0 km, the comparison between
approximate and exact boundary condition is similar to the case of
4.0 km depth, except that their phase velocities are very close only
at periods longer than 30 s.

To quantify the accuracy of WCA for global ocean, we generate
the map of critical period beyond which the mismatch of phase
velocity between approximate and exact boundary condition is less
than 5 per cent. We extract the ocean water depth and crustal models
from the CRUST 2.0 model (Bassin et al. 2000) in 2◦ × 2◦ grids.
As shown in Fig. 9, in most part of ocean regions, the critical period
is 15 s. But for a substantial part of the northwestern Pacific Ocean
and some parts of the Atlantic Ocean, the critical period is about
20 s, as the result of deeper ocean. Near mid-ocean ridges where
ocean is a little bit shallower, the critical period is about 10 s, and
for shallow sea, the critical period is less than 5 s. The effects due to
deep trenches are not observed on this figure, probably because
bathymetric features of narrow trenches are smoothed out with
2◦ × 2◦ sampling.

We also quantify the accuracy of WCA in computing Rayleigh
wave phase velocity for the global ocean at given periods (Sup-
porting Information Fig. S3). At period of 20 s, the error is larger
than 2 per cent in substantial part of deep oceans, and is less than
1 per cent near mid-ocean ridges or shallow sea regions. At pe-
riod of 25 s, the error is less than 1 per cent for majority part
of oceans. At periods of 30 s, the discrepancy is less than 1 per
cent in almost all the oceanic region. This suggests that WCA at
periods longer than 25 s is sufficient to account for effects of wa-
ter layer, leading to error less than 1 per cent which is smaller
than 2–3 per cent lateral variation in various tomography models
(Ekström 2011).

5 D I S C U S S I O N

From above analysis, we find that the WCA is accurate in simulating
both PP and Rayleigh waves at periods longer than 25 s for most
part of global oceans. This result is consistent with the qualitative
conclusion by Komatitsch & Tromp (2002b), who find that WCA
becomes invalid at periods shorter than typically 20 s (Komatitsch
et al. 2005; Chaljub et al. 2007). If the error bound is relaxed (e.g.
PP amplitude error < 10 per cent or Rayleigh wave dispersion
error < 2 per cent), WCA can indeed be used for periods as low as
20 s (Supporting Information Figs S1 and S3). But at even shorter
periods (down to 10 s), the PP amplitude is substantially lower
than the value from the exact boundary condition (Figs 3a–c, for
average ocean depth of 4 km). Ritsema et al. (2002) used SEM with
WCA to investigate the global amplitude ratio of PP/P at periods
longer than 16 s and found that PP/P amplitude ratio is about
10 per cent lower than PREM. Although they proposed that 3-D
heterogeneity could be the reason, we suggest that lower amplitude
due to WCA could also partly contribute to the smaller PP/P ratio.
For example, as demonstrated in Supporting Information Fig. S1(a),
PP amplitude with WCA is 10 per cent lower at period of 15 s for
deep basin of Pacific and Atlantic oceans. In observational studies of
PP precursors, period down to 8 s has been used (Deuss et al. 2006).
Therefore, caution needs to be taken if SEM or other numerical
solvers are used to simulate global PP waves at this frequency
band.

However, we have only analysed very idealized situation with uni-
form ocean layer above flat horizontal seafloor, and have not studied
the effects of seafloor topography and stratification of ocean water
due to layering of temperature and salinity. For the case of a flat
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Figure 9. Global distribution of critical periods for Rayleigh wave dispersion error less than 5 per cent.

Figure 10. Schematic drawing of flat (a) and undulating (b) seafloor. For the case of flat seafloor, the thickness H along vertical direction (plumb line) and the
thickness H′ along the normal direction are same. But they differ for the case of undulating seafloor.

horizontal floor, the vertical direction is same as the normal direc-
tion to the seafloor, but these two directions are different for the
case of undulating seafloor. Therefore, the vertical depth of ocean
water (H) is usually different from the depth in the normal direc-
tion (H´) (Fig. 10). Furthermore, the slope of seafloor may have
some effect on the PP reflection coefficients. However, the slope
of seafloor is usually very small, except regions near volcanoes in
the ocean (Stewart 2004). Probably, the slope of realistic seafloor
only has second order effects, and does not substantially affect
WCA, which is a first order approximation. Moreover, stratifica-
tion of ocean water is also minor compared to layering in the solid
Earth, and will probably not obviously bias our results in this paper.
The influences of these second-order effects can be verified on a
regional scale using the SEM code implemented with the approxi-
mate or exact boundary condition across seafloor (Komatitsch et al.
2000).

However, we only analysed accuracy of WCA in simulating PP
reflection coefficient and Rayleigh wave phase velocity at individual
periods. But in the practical studies of observed PP waves, the
seismic waveform data are usually modelled in a frequency band
instead of at one frequency, for example, 8–75 s and 15–75 s in Deuss
(2009). Therefore, more detailed assessment of accuracy of the PP
amplitude should be conducted via integration over the frequency
band. Furthermore, PP waves are not reflected at a point, but within
a broad Fresnel zone, and Rayleigh waves also propagate in a finite
volume instead of along an infinitely thin ray. Theoretically, more
quantitative study of the accuracy of WCA should also be performed
via integration over the whole Fresnel zone. With those being said,
the analysis in this paper provides a basic quantification of the
accuracy of WCA.

6 C O N C LU S I O N S

Usually WCA is used in SEM and other numerical solvers to ac-
count for effects of global ocean structure, so as to reduce cost of
computation time and memory in global seismic wave simulation
because the ocean layer is not meshed explicitly. However, it is only
valid when the ocean is shallow as compared to seismic wave length.
In this paper, we quantify the accuracy of WCA in simulating PP
and Rayleigh waves at different depths of ocean from hundreds of
meters to 10 km. Based on plane wave theory, we derive a uni-
fied boundary condition for a homogeneous water layer above the
solid Earth. We analyse its accuracy in simulating PP reflection and
Rayleigh wave dispersion for different ocean depths and periods,
via deriving an analytical form of PP-wave reflection coefficient
and implementing a matrix-based method in calculating eigenfunc-
tion of fundamental mode Rayleigh wave. We find that WCA is
sufficiently accurate for global ocean at periods longer than 25 s,
and is valid for most part of the global ocean at periods longer than
20 s. But at periods of 15 s or lower, the approximation may lead
to 10 per cent or larger error in PP amplitude and a few seconds
time shift in PP arrival, as well as up to 2 per cent error in Rayleigh
wave dispersion, for substantial part of deep oceans. Therefore,
it is safe to use SEM and other numerical solvers with WCA in
simulating global seismic waves at periods of 25 s and longer, but
caution should be taken when simulating seismic waves at shorter
periods.

As the current version of WCA only takes advantage of the
first term in Taylor expansion of the exact boundary condition, it
could be improved via higher order terms. But, it is technically
difficult to implement in SEM with order 2 and higher of the exact

 at U
niversity of Science and T

echnology of C
hina on N

ovem
ber 27, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Accuracy of water column approximation 1325

boundary condition as it implies the gradient value of the wavefield.
An effective algorithm has been proposed by Capdeville & Marigo
(2008) to account for complexity near free surface with accuracy up
to order 2. Alternatively, it could also be improved via imposing the
exact boundary condition, which involves of a nonlinear function of
the vertical slowness. In this case, horizontal and vertical slowness
needs to be estimated by analysing local plane wavefield generated
in SEM simulations, thus requiring extra coding efforts. Another
way is to calibrate the effects of the water layer on PP reflection
and Rayleigh dispersion assuming given slowness in a 1-D Earth
model, but its effectiveness needs to be benchmarked in the future.
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